skip to main content


Title: Spectroscopic Properties of the Astrochemical Molecules [Al, O, Si] x (x = 0, +1)
Abstract

Aluminum and silicon are present in large quantities in the interstellar medium, making the triatomic species consisting of both elements intriguing with regard to the foundations of astrochemistry. Spectroscopic parameters have been calculated via high-level ab initio methods to assist with laboratory and observational detection of [Al, O, Si]x(x= 0,+1). All [Al, O, Si]x(x= 0,+1) isomers exist in the linear geometry, with linear AlOSi (X2Π) and linear AlOSi+(X1Δ) being the most stable neutral and cationic species, respectively. Formation of the neutral species most likely occurs via reaction of AlO/SiO on an Si/Al dust grain surface, respectively. The cation molecules may form via ion–neutral reaction or as a consequence of photoionization. The rotational frequencies of linear AlOSi (X2Π) have been calculated using vibrationally corrected rotational constants and centrifugal distortion to lead experimental and observational radio detection. The rotational frequencies are discussed for three temperatures indicative of various astronomical environments: the central circumstellar envelope (CSE) (100 K), outer CSE (30 K), and the interstellar medium (3 K). At 100 K, the lines originating fromJ′ > 30 are the best candidates for detection via ground-based telescope. Anharmonic vibrational analysis revealed various Fermi resonances that may complicate the vibrational spectrum of linear AlOSi (X2Π). Finally, electronic spectroscopy may be the best means for laboratory detection of linear AlOSi (X2Π), due to the presence of two overlapping electronic transitions with large oscillator strengths occurring at approximately 250 nm.

 
more » « less
NSF-PAR ID:
10376747
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 156
Size(s):
["Article No. 156"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.In recent times, large organic molecules of exceptional complexity have been found in diverse regions of the interstellar medium.

    Aims.In this context, we aim to provide accurate frequencies of the ground vibrational state of two key aliphatic aldehydes,n-butanal and its branched-chain isomer, i-butanal, to enable their eventual detection in the interstellar medium. We also want to test the level of complexity that interstellar chemistry can reach in regions of star formation.

    Methods.We employ a frequency modulation millimeter-wave absorption spectrometer to measure the rotational features ofn- andi-butanal. We analyze the assigned rotational transitions of each rotamer separately using theA-reduced semirigid-rotor Hamiltonian. We use the spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array to search forn- andi-butanal toward the star-forming region Sgr B2(N). We also search for both aldehydes toward the molecular cloud G+0.693−0.027 with IRAM 30 m and Yebes 40 m observations. The observational results are compared with computational results from a recent gas-grain astrochemical model.

    Results.Several thousand rotational transitions belonging to the lowest-energy conformers of two distinct linear and branched isomers have been assigned in the laboratory spectra up to 325 GHz. A precise set of the relevant rotational spectroscopic constants has been determined for each structure as a first step toward identifying both molecules in the interstellar medium. We report non-detections ofn-and i-butanal toward both sources, Sgr B2(N1S) and G+0.693-0.027. We find thatn- andi-butanal are at least 2-6 and 6-18 times less abundant than acetaldehyde toward Sgr B2(N1S), respectively, and thatn-butanal is at least 63 times less abundant than acetaldehyde toward G+0.693−0.027. While propanal is not detected toward Sgr B2(N1S) either, with an abundance at least 5–11 lower than that of acetaldehyde, propanal is found to be 7 times less abundant than acetaldehyde in G+0.693−0.027. Comparison with astrochemical models indicates good agreement between observed and simulated abundances (where available). Grain-surface chemistry appears sufficient to reproduce aldehyde ratios in G+0.693−0.027; gas-phase production may play a more active role in Sgr B2(N1S). Model estimates for the larger aldehydes indicate that the observed upper limits may be close to the underlying values.

    Conclusions.Our astronomical results indicate that the family of interstellar aldehydes in the Galactic center region is characterized by a drop of one order of magnitude in abundance at each incrementation in the level of molecular complexity.

     
    more » « less
  2. Context.The interstellar detections of isocyanic acid (HNCO), methyl isocyanate (CH3NCO), and very recently also ethyl isocyanate (C2H5NCO) invite the question of whether or not vinyl isocyanate (C2H3NCO) can be detected in the interstellar medium. There are only low-frequency spectroscopic data (<40 GHz) available for this species in the literature, which makes predictions at higher frequencies rather uncertain, which in turn hampers searches for this molecule in space using millimeter (mm) wave astronomy.

    Aims.The aim of the present study is on one hand to extend the laboratory rotational spectrum of vinyl isocyanate to the mm wave region and on the other to search, for the first time, for its presence in the high-mass star-forming region Sgr B2, where other isocyanates and a plethora of complex organic molecules are observed.

    Methods.We recorded the pure rotational spectrum of vinyl isocyanate in the frequency regions 127.5–218 and 285–330 GHz using the Prague mm wave spectrometer. The spectral analysis was supported by high-level quantum-chemical calculations. On the astronomy side, we assumed local thermodynamic equilibrium to compute synthetic spectra of vinyl isocyanate and to search for it in the ReMoCA survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the high-mass star-forming protocluster Sgr B2(N). Additionally, we searched for the related molecule ethyl isocyanate in the same source.

    Results.Accurate values for the rotational and centrifugal distortion constants are reported for the ground vibrational states of trans and cis vinyl isocyanate from the analysis of more than 1000 transitions. We report nondetections of vinyl and ethyl isocyanate toward the main hot core of Sgr B2(N). We find that vinyl and ethyl isocyanate are at least 11 and 3 times less abundant than methyl isocyanate in this source, respectively.

    Conclusions.Although the precise formation mechanism of interstellar methyl isocyanate itself remains uncertain, we infer from existing astrochemical models that our observational upper limit for the CH3NCO:C2H5NCO ratio in Sgr B2(N) is consistent with ethyl isocyanate being formed on dust grains via the abstraction or photodissociation of an H atom from methyl isocyanate, followed by the addition of a methyl radical. The dominance of such a process for ethyl isocyanate production, combined with the absence of an analogous mechanism for vinyl isocyanate, would indicate that the ratio C2H3NCO:C2H5NCO should be less than unity. Even though vinyl isocyanate was not detected toward Sgr B2(N), the results of this work represent a significant improvement on previous low-frequency studies and will help the astronomical community to continue searching for this species in the Universe.

     
    more » « less
  3. Context. Numerous complex organic molecules have been detected in the universe and among them are amides, which are considered as prime models for species containing a peptide linkage. In its backbone, acrylamide (CH 2 CHC(O)NH 2 ) bears not only the peptide bond, but also the vinyl functional group that is a common structural feature in many interstellar compounds. This makes acrylamide an interesting candidate for searches in the interstellar medium. In addition, a tentative detection of the related molecule propionamide (C 2 H 5 C(O)NH 2 ) has been recently claimed toward Sgr B2(N). Aims. The aim of this work is to extend the knowledge of the laboratory rotational spectrum of acrylamide to higher frequencies, which would make it possible to conduct a rigorous search for interstellar signatures of this amide using millimeter wave astronomy. Methods. We measured and analyzed the rotational spectrum of acrylamide between 75 and 480 GHz. We searched for emission of acrylamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array toward Sgr B2(N). We also searched for propionamide in the same source. The astronomical spectra were analyzed under the assumption of local thermodynamic equilibrium. Results. We report accurate laboratory measurements and analyses of thousands of rotational transitions in the ground state and two excited vibrational states of the most stable syn form of acrylamide. In addition, we report an extensive set of rotational transitions for the less stable skew conformer. Tunneling through a low energy barrier between two symmetrically equivalent configurations has been revealed for this higher-energy species. Neither acrylamide nor propionamide were detected toward the two main hot molecular cores of Sgr B2(N). We did not detect propionamide either toward a position located to the east of the main hot core, thereby undermining the recent claim of its interstellar detection toward this position. We find that acrylamide and propionamide are at least 26 and 14 times less abundant, respectively, than acetamide toward the main hot core Sgr B2(N1S), and at least 6 and 3 times less abundant, respectively, than acetamide toward the secondary hot core Sgr B2(N2). Conclusions. A comparison with results of astrochemical kinetics model for related species suggests that acrylamide may be a few hundred times less abundant than acetamide, corresponding to a value that is at least an order of magnitude lower than the observational upper limits. Propionamide may be as little as only a factor of two less abundant than the upper limit derived toward Sgr B2(N1S). Lastly, the spectroscopic data presented in this work will aid future searches of acrylamide in space. 
    more » « less
  4. Abstract

    A new interstellar molecule, FeC (X3Δi), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ= 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearVLSR≈ −26 km s−1and linewidths of ΔV1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R*(∼6″) extending out to ∼500R*(∼10″) and a fractional abundance, relative to H2, off∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off∼ 8 × 10−11in a larger shell situated near 800R*. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection.

     
    more » « less
  5. The reactions of the D1-silylidyne radical (SiD; X 2 Π) with deuterium sulfide (D 2 S; X 1 A 1 ) and hydrogen sulfide (H 2 S; X 1 A 1 ) were conducted utilizing a crossed molecular beams machine under single collision conditions. The experimental work was carried out in conjunction with electronic structure calculations. The elementary reaction commences with a barrierless addition of the D1-silylidyne radical to one of the non-bonding electron pairs of the sulfur atom of hydrogen (deuterium) sulfide followed by possible bond rotation isomerization and multiple atomic hydrogen (deuterium) migrations. Unimolecular decomposition of the reaction intermediates lead eventually to the D1-thiosilaformyl radical (DSiS) (p1) and D2-silanethione (D 2 SiS) (p3) via molecular and atomic deuterium loss channels (SiD–D 2 S system) along with the D1-thiosilaformyl radical (DSiS) (p1) and D1-silanethione (HDSiS) (p3) through molecular and atomic hydrogen ejection (SiD–H 2 S system) via indirect scattering dynamics in barrierless and overall exoergic reactions. Our study provides a look into the complex dynamics of the silicon and sulfur chemistries involving multiple deuterium/hydrogen shifts and tight exit transition states, as well as insight into silicon- and sulfur-containing molecule formation pathways in deep space. Although neither of the non-deuterated species – the thiosilaformyl radical (HSiS) and silanethione (H 2 SiS) – have been observed in the interstellar medium (ISM) thus far, astrochemical models presented here predict relative abundances in the Orion Kleinmann-Low nebula to be sufficiently high enough for detection. 
    more » « less