Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods. One key factor in super-resolution is the size of the luminescent label, which in some cases results in a frame shift between the label target and the label itself. Ag@SiO 2 core–shell nanoparticles, doped with organic fluorophores, have shown promise as super-resolution labels. One key aspect of these nanoparticles is that they blink under certain conditions, allowing super-resolution localization with a single excitation source in aqueous solution. In this work, we investigated the effects of both the Ag core and the silica (SiO 2 ) shell on the self-blinking properties of these nanoparticles. Both core size and shell thickness were manipulated by altering the reaction time to determine core and shell effects on photoblinking. Size and shell thickness were investigated individually under both dry and hydrated conditions and were then doped with a 1 mM solution of Rhodamine 110 for analysis. We observed that the cores themselves are weakly luminescent and are responsible for the blinking observed in the fully-synthesized metal-enhanced fluorescence nanoparticles. There was no statistically significant difference in photoblinking behavior—both intensity and duty cycle—with decreasing core size. This observation was used to synthesize smaller nanoparticles ranging from approximately 93 nm to 110 nm as measured using dynamic light scattering. The blinking particles were localized via super-resolution microscopy and show single particle self-blinking behavior. As the core size did not impact blinking performance or intensity, the nanoparticles can instead be tuned for optimal size without sacrificing luminescence properties.
more »
« less
Synthesis and Characterization of Dye-Doped Au@SiO 2 Core-Shell Nanoparticles for Super-Resolution Fluorescence Microscopy
Dye-doped nanoparticles have been investigated as bright, fluorescent probes for localization-based super-resolution microscopy. Nanoparticle size is important in super-resolution microscopy to get an accurate size of the object of interest from image analysis. Due to their self-blinking behavior and metal-enhanced fluorescence (MEF), Ag@SiO2and Au@Ag@SiO2nanoparticles have shown promise as probes for localization-based super-resolution microscopy. Here, several noble metal-based dye-doped core-shell nanoparticles have been investigated as self-blinking nanomaterial probes. It was observed that both the gold- and silver-plated nanoparticle cores exhibit weak luminescence under certain conditions due to the surface plasmon resonance bands produced by each metal, and the gold cores exhibit blinking behavior which enhances the blinking and fluorescence of the dye-doped nanoparticle. However, the silver-plated nanoparticle cores, while weakly luminescent, did not exhibit any blinking; the dye-doped nanoparticle exhibited the same behavior as the core fluorescent, but did not blink. Because of the blinking behavior, stochastic optical reconstruction microscopy (STORM) super-resolution analysis was able to be performed with performed on the gold core nanoparticles. A preliminary study on the use of these nanoparticles for localization-based super-resolution showed that these nanoparticles are suitable for use in STORM super resolution. Resolution enhancement was two times better than the diffraction limited images, with core sizes reduced to 15 nm using the hybrid Au–Ag cores.
more »
« less
- Award ID(s):
- 1849063
- PAR ID:
- 10376879
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Applied Spectroscopy
- Volume:
- 76
- Issue:
- 11
- ISSN:
- 0003-7028
- Format(s):
- Medium: X Size: p. 1367-1374
- Size(s):
- p. 1367-1374
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Super resolution microscopy was developed to overcome the Abbe diffraction limit, which effects conventional optical microscopy, in order to study the smaller components of biological systems. In recent years nanomaterials have been explored as luminescent probes for super resolution microscopy, as many have advantages over traditional fluorescent dye molecules. This review will summarize several different types of nanomaterial probes, covering quantum dots, carbon dots, and dye doped nanoparticles. For the purposes of this review the term “nanoparticle” will be limited to polymer-based, protein-based, and silica-based nanoparticles, including core–shell structured nanoparticles. Luminescent nanomaterials have shown promise as super-resolution probes, and continued research in this area will yield new advances in both materials science and biochemical microscopy at the nanometer scale.more » « less
-
Protein-functionalized nanoparticles introduce a potentially novel drug delivery method for medical therapeutics, including involvement in cancer therapies and as contrast agents in imaging. Gold and silver nanoparticles are of particular interest due to their distinctive properties. Extensive research shows that gold nanoparticles demonstrate incredible photothermal properties and non-toxic behavior, while silver nanoparticles exhibit antibacterial properties but increase toxicity for human use. However, little is known regarding the properties or applications of hybrid silver-gold particles. This study measured the UV-Vis absorbance spectrum for 40 nm diameter Au, streptavidin-conjugated Au, Ag@Au hybrid, Ag nanoparticles, and Transient Absorbance Spectra of Au. Analysis indicates that the hybrid particles exhibit characteristics of both Ag and Au particles, implying potential applications similar to both Ag and Au nanoparticles.more » « less
-
Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.more » « less
-
null (Ed.)Silica-encapsulated gold core@shell nanoparticles (Au@SiO 2 CSNPs) were synthesized via a tunable bottom-up procedure to catalyze the aerobic oxidation of benzyl alcohol. The nanoparticles exhibit a mesoporous shell which enhances selectivity by inhibiting the formation of larger species. Adding potassium carbonate to the reaction increased conversion from 17.3 to 60.4% while decreasing selectivity from 98.4 to 75.0%. A gold nanoparticle control catalyst with a similar gold surface area took 6 times as long to reach the same conversion, achieving only 49.4% selectivity. These results suggest that the pore size distribution within the inert silica shell of Au@SiO 2 CSNPs inhibits the formation of undesired products to facilitate the selective oxidation of benzaldehyde despite a basic environment. A smaller activation energy, mass transport analysis, and mesopore distribution together suggest the Au@SiO 2 CSNP catalyst demonstrates higher activity through beneficial in-pore orientation, promoting a lower activation energy mechanistic pathway. Taken together, this is a promising catalytic structure to optimize oxidation chemistries, without leveraging surface-interacting factors like chelating agents or active support surfaces.more » « less