skip to main content


Title: Digital Extended Specimens: Enabling an Extensible Network of Biodiversity Data Records as Integrated Digital Objects on the Internet
Abstract The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet—the Digital Extended Specimen (DES) network—that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.  more » « less
Award ID(s):
2033973
NSF-PAR ID:
10377061
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
10
ISSN:
0006-3568
Page Range / eLocation ID:
978 to 987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the first decades of the 21stcentury, there has been a global trend towards digitisation and the mobilisation of data from natural history museums and research institutions. The development of national and international aggregator systems, which focused on data standards, made it possible to access millions of museum specimen records. These records serve as an empirical foundation for research across various fields. In addition, community efforts have expanded the concept of natural history collection specimens to include physical preparations and digital resources, resulting in the Digital Extended Specimen (DES), which also includes derived and related data. Within this context, the paper proposes using the FAIR Digital Object (FDO) framework to accelerate the global vision of the DES, arguing that FDO-enabled infrastructures can reduce barriers to the discovery and access of specimens, help ensure credit back to contributors and increase the amount of research that incorporates biodiversity data.

     
    more » « less
  2. As we look to the future of natural history collections and a global integration of biodiversity data, we are reliant on a diverse workforce with the skills necessary to build, grow, and support the data, tools, and resources of the Digital Extended Specimen (DES; Webster 2019, Lendemer et al. 2020, Hardisty 2020). Future “DES Data Curators” – those who will be charged with maintaining resources created through the DES – will require skills and resources beyond what is currently available to most natural history collections staff. In training the workforce to support the DES we have an opportunity to broaden our community and ensure that, through the expansion of biodiversity data, the workforce landscape itself is diverse, equitable, inclusive, and accessible. A fully-implemented DES will provide training that encapsulates capacity building, skills development, unifying protocols and best practices guidance, and cutting-edge technology that also creates inclusive, equitable, and accessible systems, workflows, and communities. As members of the biodiversity community and the current workforce, we can leverage our knowledge and skills to develop innovative training models that: include a range of educational settings and modalities; address the needs of new communities not currently engaged with digital data; from their onset, provide attribution for past and future work and do not perpetuate the legacy of colonial practices and historic inequalities found in many physical natural history collections. Recent reports from the Biodiversity Collections Network (BCoN 2019) and the National Academies of Science, Engineering and Medicine (National Academies of Sciences, Engineering, and Medicine 2020) specifically address workforce needs in support of the DES. To address workforce training and inclusivity within the context of global data integration, the Alliance for Biodiversity Knowledge included a topic on Workforce capacity development and inclusivity in Phase 2 of the consultation on Converging Digital Specimens and Extended Specimens - Towards a global specification for data integration. Across these efforts, several common themes have emerged relative to workforce training and the DES. A call for a community needs assessment: As a community, we have several unknowns related to the current collections workforce and training needs. We would benefit from a baseline assessment of collections professionals to define current job responsibilities, demographics, education and training, incentives, compensation, and benefits. This includes an evaluation of current employment prospects and opportunities. Defined skills and training for the 21st century collections professional: We need to be proactive and define the 21st century workforce skills necessary to support the development and implementation of the DES. When we define the skills and content needs we can create appropriate training opportunities that include scalable materials for capacity building, educational materials that develop relevant skills, unifying protocols across the DES network, and best practices guidance for professionals. Training for data end-users: We need to train data end-users in biodiversity and data science at all levels of formal and informal education from primary and secondary education through the existing workforce. This includes developing training and educational materials, creating data portals, and building analyses that are inclusive, accessible, and engage the appropriate community of science educators, data scientists, and biodiversity researchers. Foster a diverse, equitable, inclusive, and accessible and professional workforce: As the DES develops and new tools and resources emerge, we need to be intentional in our commitment to building tools that are accessible and in assuring that access is equitable. This includes establishing best practices to ensure the community providing and accessing data is inclusive and representative of the diverse global community of potential data providers and users. Upfront, we must acknowledge and address issues of historic inequalities and colonial practices and provide appropriate attribution for past and future work while ensuring legal and regulatory compliance. Efforts must include creating transparent linkages among data and the humans that create the data that drives the DES. In this presentation, we will highlight recommendations for building workforce capacity within the DES that are diverse, inclusive, equitable and accessible, take into account the requirements of the biodiversity science community, and that are flexible to meet the needs of an evolving field. 
    more » « less
  3. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES).

    Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision.

    The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions.

    This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work.

     
    more » « less
  4. Abstract

    This paper introduces a new method using deep neural networks for the interactive digital transformation and simulation of n-bar planar linkages, which consist of revolute and prismatic joints, based on hand-drawn sketches. Instead of relying solely on computer vision, our approach combines topological knowledge of linkage mechanisms with the outcomes of a convolutional deep neural network. This creates a framework for recognizing hand-drawn sketches. We generate a dataset of synthetic images that resemble hand-drawn sketches of linkage mechanisms. Next, we fine-tune a state-of-the-art deep neural network to detect discrete objects using building blocks that represent joints and links in various positions, sizes, and orientations within these sketches. We then conduct a topological analysis on the detected objects to construct a kinematic model of the sketched mechanisms. The results demonstrate the effectiveness of our algorithm in handling hand-drawn sketches and converting them into digital representations. This has practical implications for improving communication, analysis, organization, and classification of planar mechanisms.

     
    more » « less
  5. The Digital Power Network (DPN) is an energy-on-demand approach. In terms of Internet of Things (IoT), it treats the energy itself as a `thing' to be manipulated (in contrast to energy as the `thing's enabler'). The approach is mostly appropriate for energy starving micro-grids with limited capacity, such as a generator for the home while the power grid is down. The process starts with a request of a user (such as, appliance) for energy. Each appliance, energy source or energy storage has an address which is able to communicate its status. A network server, collects all requests and optimizes the energy dissemination based on priority and availability. Energy is then routed in discrete units to each particular address (say air-condition, or, A/C unit). Contrary to packets of data over a computer network whose data bits are characterized by well-behaved voltage and current values at high frequencies, here we deal with energy demands at highvoltage, low-frequency and fluctuating current. For example, turning a motor ON requires 8 times more power than the level needed to maintain a steady states operation. Our approach is seamlessly integrating all energy resources (including alternative sources), energy storage units and the loads since they are but addresses in the network. Optimization of energy requests and the analysis of satisfying these requests is the topic of this paper. Under energy constraints and unlike the current power grid, for example, some energy requests are queued and granted later. While the ultimate goal is to fuse information and energy together through energy digitization, in its simplest form, this micro-grid can be realized by overlaying an auxiliary (communication) network of controllers on top of an energy delivery network and coupling the two through an array of addressable digital power switches. 
    more » « less