skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Do post-starburst galaxies host compact molecular gas reservoirs?
ABSTRACT

We analysed the high-resolution (up to ∼0.2 arcsec) ALMA CO (2–1) and 1.3 mm dust continuum data of eight gas-rich post-starburst galaxies (PSBs) in the local Universe, six of which had been studied by a recent work. In contrast to this study reporting the detections of extraordinarily compact (i.e. unresolved) reservoirs of molecular gas in the six PSBs, our visibility-plane analysis resolves the CO (2–1) emission in all eight PSBs with effective radii (Re, CO) of $0.8_{-0.4}^{+0.9}$ kpc, typically consisting of gaseous components at both circumnuclear and extended disc scales. With this new analysis, we find that the CO sizes of gas-rich PSBs are compact with respect to their stellar sizes (median ratio $=0.43_{-0.21}^{+0.27}$), but comparable to the sizes of the gas discs seen in local luminous infrared galaxies (LIRGs) and early-type galaxies. We also find that the CO-to-stellar size ratio of gas-rich PSBs is potentially correlated with the gas depletion time-scale, placing them as transitional objects between LIRGs and early-type galaxies from an evolutionary perspective. Finally, the star formation efficiency of the observed PSBs appear consistent with those of star-forming galaxies on the Kennicutt–Schmidt relation, showing no sign of suppressed star formation from turbulent heating.

 
more » « less
NSF-PAR ID:
10377087
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
517
Issue:
1
ISSN:
1745-3925
Format(s):
Medium: X Size: p. L126-L131
Size(s):
p. L126-L131
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Post-starburst (PSB), or “E + A,” galaxies represent a rapid transitional phase between major, gas-rich mergers and gas-poor, quiescent, early-type galaxies. Surprisingly, many PSBs have been shown to host a significant interstellar medium (ISM), despite theoretical predictions that the majority of the star-forming gas should be expelled in active galactic nuclei– or starburst-driven outflows. To date, the resolved properties of this surviving ISM have remained unknown. We present high-resolution ALMA continuum and CO(2–1) observations in six gas- and dust-rich PSBs, revealing for the first time the spatial and kinematic structure of their ISM on sub-kpc scales. We find extremely compact molecular reservoirs, with dust and gas surface densities rivaling those found in (ultra)luminous infrared galaxies. We observe spatial and kinematic disturbances in all sources, with some also displaying disk-like kinematics. Estimates of the internal turbulent pressure in the gas exceed those of normal star-forming disks by at least 2 orders of magnitude, and rival the turbulent gas found in local interacting galaxies, such as the Antennae. Though the source of this high turbulent pressure remains uncertain, we suggest that the high incidence of tidal disruption events in PSBs could play a role. The star formation in these PSBs’ turbulent central molecular reservoirs is suppressed, forming stars only 10% as efficiently as starburst galaxies with similar gas surface densities. “The fall” of star formation in these galaxies was not precipitated by complete gas expulsion or redistribution. Rather, this high-resolution view of PSBs’ ISM indicates that star formation in their remaining compact gas reservoirs is suppressed by significant turbulent heating.

     
    more » « less
  2. Abstract Nuclear rings are excellent laboratories for studying intense star formation. We present results from a study of nuclear star-forming rings in five nearby normal galaxies from the Star Formation in Radio Survey (SFRS) and four local LIRGs from the Great Observatories All-sky LIRG Survey at sub-kiloparsec resolutions using Very Large Array high-frequency radio continuum observations. We find that nuclear ring star formation (NRSF) contributes 49%–60% of the total star formation of the LIRGs, compared to 7%–40% for the normal galaxies. We characterize a total of 57 individual star-forming regions in these rings, and find that with measured sizes of 10–200 pc, NRSF regions in the LIRGs have star formation rate (SFR) and Σ SFR up to 1.7 M ⊙ yr −1 and 402 M ⊙ yr −1 kpc −2 , respectively, which are about 10 times higher than in NRSF regions in the normal galaxies with similar sizes, and comparable to lensed high- z star-forming regions. At ∼100–300 pc scales, we estimate low contributions (<50%) of thermal free–free emission to total radio continuum emission at 33 GHz in the NRSF regions in the LIRGs, but large variations possibly exist at smaller physical scales. Finally, using archival sub-kiloparsec resolution CO ( J = 1–0) data of nuclear rings in the normal galaxies and NGC 7469 (LIRG), we find a large scatter in gas depletion times at similar molecular gas surface densities, which tentatively points to a multimodal star formation relation on sub-kiloparsec scales. 
    more » « less
  3. ABSTRACT

    We present a CO(3−2) study of four systems composed of six (ultra) luminous infrared galaxies (U/LIRGs), located at 0.28 <z < 0.44, that straddle the transition region between regular star-forming galaxies and starbursts. These galaxies benefit from previous multiwavelength analysis allowing in depth exploration of an understudied population of U/LIRGs at a time when the universe is experiencing a rapid decline in star formation rate density. We detect CO(3−2) emission in four targets and these galaxies fall between the loci of regular star-forming galaxies and starbursts on the Kennicutt–Schmidtt relation. Compared to low luminosity LIRGs and high luminosity ULIRGs at similar redshifts, we find they all have similar molecular gas budgets with the difference in their star formation rates (SFR) driven by the star formation efficiency (SFE). This suggests that at these redshifts large molecular gas reservoirs must coincide with an increased SFE to transition a galaxy into the starburst regime. We studied the structure and kinematics and found our four detections are either interacting or have disturbed morphology which may be driving the SFE. One of the CO(3−2) non-detections has a strong continuum detection, and has been previously observed in H α, suggesting an unusual interstellar medium for a ULIRG. We conclude that our sample of transitioning U/LIRGs fill the gap between regular star-forming galaxies and starbursts, suggest a continuous change in SFE between these two populations and the increased SFE may be driven by morphology and differing stages of interaction.

     
    more » « less
  4. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities. 
    more » « less
  5. It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pre-processed in filaments and groups before falling into the cluster. Our goal is to quantify this pre-processing in terms of gas content and SFR, as a function of density in cosmic filaments. We have observed the two first CO transitions in 163 galaxies with the IRAM-30 m telescope, and added 82 more measurements from the literature, thus forming a sample of 245 galaxies in the filaments around the Virgo cluster. We gathered HI-21cm measurements from the literature and observed 69 galaxies with the Nançay telescope to complete our sample. We compare our filament galaxies with comparable samples from the Virgo cluster and with the isolated galaxies of the AMIGA sample. We find a clear progression from field galaxies to filament and cluster galaxies for decreasing SFR, increasing fraction of galaxies in the quenching phase, an increasing proportion of early-type galaxies, and decreasing gas content. Galaxies in the quenching phase, defined as having a SFR below one-third of that of the main sequence (MS), are only between 0% and 20% in the isolated sample, according to local galaxy density, while they are 20%–60% in the filaments and 30%–80% in the Virgo cluster. Processes that lead to star formation quenching are already at play in filaments; they depend mostly on the local galaxy density, while the distance to the filament spine is a secondary parameter. While the HI-to-stellar-mass ratio decreases with local density by an order of magnitude in the filaments, and two orders of magnitude in the Virgo cluster with respect to the field, the decrease is much less for the H 2 -to-stellar-mass ratio. As the environmental density increases, the gas depletion time decreases, because the gas content decreases faster than the SFR. This suggests that gas depletion precedes star formation quenching. 
    more » « less