skip to main content


Title: Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties
Abstract

Identification of a heterogeneous conductivity field and reconstruction of a contaminant release history are key aspects of subsurface remediation. These two goals are achieved by combining model predictions with sparse and noisy hydraulic head and concentration measurements. Solution of this inverse problem is notoriously difficult due to, in part, high dimensionality of the parameter space and high computational cost of repeated forward solves. We use a convolutional adversarial autoencoder (CAAE) to parameterize a heterogeneous non‐Gaussian conductivity field via a low‐dimensional latent representation. A three‐dimensional dense convolutional encoder‐decoder (DenseED) network serves as a forward surrogate of the flow and transport model. The CAAE‐DenseED surrogate is fed into the ensemble smoother with multiple data assimilation (ESMDA) algorithm to sample from the Bayesian posterior distribution of the unknown parameters, forming a CAAE‐DenseED‐ESMDA inversion framework. The resulting CAAE‐DenseED‐ESMDA inversion strategy is used to identify a three‐dimensional contaminant source and conductivity field. A comparison of the inversion results from CAAE‐ESMDA with physical flow and transport simulator and from CAAE‐DenseED‐ESMDA shows that the latter yields accurate reconstruction results at the fraction of the computational cost of the former.

 
more » « less
PAR ID:
10377168
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐resolution characterization of hydraulic properties and dense nonaqueous phase liquid (DNAPL) contaminant source is crucial to develop efficient remediation strategies. However, DNAPL characterization suffers from a limited number of borehole data in the field, resulting in a low‐resolution estimation. Moreover, high‐resolution DNAPL characterization requires a large number of unknowns to be estimated, presenting a computational bottleneck. In this paper, a low‐cost geophysical approach, the self‐potential method, is used as additional information for hydraulic properties characterization. Joint inversion of hydraulic head and self‐potential measurements is proposed to improve hydraulic conductivity estimation, which is then used to characterize the DNAPL saturation distribution by inverting partitioning tracer measurements. The computational barrier is overcome by (a) solving the inversion by the principal component geostatistical approach, in which the covariance matrix is replaced by a low‐rank approximation, thus reducing the number of forward model runs; (b) using temporal moments of concentrations instead of individual concentration data points for faster forward simulations. To assess the ability of the proposed approach, numerical experiments are conducted in a 3‐D aquifer with 104unknown hydraulic conductivities and DNAPL saturations. Results show that with realistic DNAPL sources and a limited number of hydraulic heads, the traditional hydraulic/partitioning tracer tomography roughly reconstructs subsurface heterogeneity but fails to resolve the DNAPL distribution. By adding self‐potential data, the error is reduced by 24% in hydraulic conductivity estimation and 68% in DNAPL saturation characterization. The proposed sequential inversion framework utilizes the complementary information from multi‐source hydrogeophysical data sets, and can provide high‐resolution characterizations for realistic DNAPL sources.

     
    more » « less
  2. Reconstructing high-resolution flow fields from sparse measurements is a major challenge in fluid dynamics. Existing methods often vectorize the flow by stacking different spatial directions on top of each other, hence confounding the information encoded in different dimensions. Here, we introduce a tensor-based sensor placement and flow reconstruction method which retains and exploits the inherent multidimensionality of the flow. We derive estimates for the flow reconstruction error, storage requirements and computational cost of our method. We show, with examples, that our tensor-based method is significantly more accurate than similar vectorized methods. Furthermore, the variance of the error is smaller when using our tensor-based method. While the computational cost of our method is comparable to similar vectorized methods, it reduces the storage cost by several orders of magnitude. The reduced storage cost becomes even more pronounced as the dimension of the flow increases. We demonstrate the efficacy of our method on three examples: a chaotic Kolmogorov flow, in situ and satellite measurements of the global sea surface temperature and three-dimensional unsteady simulated flow around a marine research vessel. 
    more » « less
  3. Slickwater hydraulic fracturing is becoming a prevalent approach to economically recovering shale hydrocarbon. It is very important to understand the proppant’s transport behavior during slickwater hydraulic fracturing treatment for effective creation of a desired propped fracture geometry. The currently available models are either oversimplified or have been performed at limited length scales to avoid high computational requirements. Another limitation is that the currently available hydraulic fracturing simulators are developed using only single-sized proppant particles. Motivated by this, in this work, a computationally efficient, three-dimensional, multiphase particle-in-cell (MP-PIC) model was employed to simulate the multi-size proppant transport in a field-scale geometry using the Eulerian–Lagrangian framework. Instead of tracking each particle, groups of particles (called parcels) are tracked, which allows one to simulate the proppant transport in field-scale geometries at an affordable computational cost. Then, we found from our sensitivity study that pumping schedules significantly affect propped fracture surface area and average fracture conductivity, thereby influencing shale gas production. Motivated by these results, we propose an optimization framework using the MP-PIC model to design the multi-size proppant pumping schedule that maximizes shale gas production from unconventional reservoirs for given fracturing resources. 
    more » « less
  4. Abstract

    This paper introduces a computational framework to reconstruct and forecast a partially observed state that evolves according to an unknown or expensive-to-simulate dynamical system. Our reduced-order autodifferentiable ensemble Kalman filters (ROAD-EnKFs) learn a latent low-dimensional surrogate model for the dynamics and a decoder that maps from the latent space to the state space. The learned dynamics and decoder are then used within an EnKF to reconstruct and forecast the state. Numerical experiments show that if the state dynamics exhibit a hidden low-dimensional structure, ROAD-EnKFs achieve higher accuracy at lower computational cost compared to existing methods. If such structure is not expressed in the latent state dynamics, ROAD-EnKFs achieve similar accuracy at lower cost, making them a promising approach for surrogate state reconstruction and forecasting.

     
    more » « less
  5. Fast inference of numerical model parameters from data is an important prerequisite to generate predictive models for a wide range of applications. Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive. New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space, and rely on gradient-based optimization instead of sampling, providing a more efficient approach for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating an expensive likelihood can be mitigated by replacing the true model with an offline trained surrogate model, such as neural networks. However, this approach might generate significant bias when the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and surrogate model parameters. We also propose an efficient sample weighting scheme for surrogate model training that preserves global accuracy while effectively capturing high posterior density regions. We demonstrate the inferential and computational superiority of NoFAS against various benchmarks, including cases where the underlying model lacks identifiability. The source code and numerical experiments used for this study are available at https://github.com/cedricwangyu/NoFAS. 
    more » « less