skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: Assessments of students’ gains in conceptual understanding and technical skills after using authentic, online learning modules on hydrology and water resources
The need to adapt quickly to online or remote instruction has been a challenge for instructors during the COVID pandemic. A common issue instructors face is finding high-quality curricular materials that can enhance student learning by engaging them in solving complex, real-world problems. The current study evaluates a set of 15 web-based learning modules that promote the use of authentic, high-cognitive demand tasks. The modules were developed collaboratively by a group of instructors during a HydroLearn hackathon-workshop program. The modules cover various topics in hydrology and water resources, including physical hydrology, hydraulics, climate change, groundwater flow and quality, fluid mechanics, open channel flow, remote sensing, frequency analysis, data science, and evapotranspiration. The study evaluates the impact of the modules on students’ learning in terms of two primary aspects: understanding of fundamental concepts and improving technical skills. The study uses a practical instrument to measure students’ perceived changes in concepts and technical skills known as the Student Assessment of Learning Gains (SALG) survey. The survey was used at two-time points in this study: before the students participated in the module (pre) and at the conclusion of the module (post). The surveys were modified to capture the concepts and skills aligned with the learning objectives of each module. We calculated the learning gains by examining differences in students’ self-reported understanding of concepts and skills from pre- to post-implementation on the SALG using paired samples t -tests. The majority of the findings were statistically at the 0.05 level and practically significant. As measured by effect size, practical significance is a means for identifying the strength of the conclusions about a group of differences or the relationship between variables in a study. The average effect size in educational research is d = 0.4. The effect sizes from this study [0.45, 1.54] suggest that the modules play an important role in supporting students’ gains in conceptual understanding and technical skills. The evidence from this study suggests that these learning modules can be a promising way to deliver complex subjects to students in a timely and effective manner.  more » « less
Award ID(s):
1726965 1726667
NSF-PAR ID:
10377209
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
7
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  2. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  3. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  4. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  5. Security is a critical aspect in the design, development, and testing of software systems. Due to the increasing need for security-related skills within software systems and engineering, there is a growing demand for these skills to be taught at the university level. A series of 41 security modules was developed to assess the impact of these modules on teaching critical cyber security topics to students. This paper presents the implementation and outcomes of the first set of six security modules in a Freshman level course. This set consists of five modules presented in lectures as well as a sixth module emphasizing encryption and decryption used as the semester project for the course. Each module is a collection of concepts related to cyber security. The individual cyber security concepts are presented with a general description of a security issue to avoid, sample code with the security issue written in the Java programming language, and a second version of the code with an effective solution. The set of these modules was implemented in Computer Science I during the Fall 2019 semester. Incorporating each of the concepts in these modules into lectures depends on both the topic covered and the approach to resolving the related security issue. Students were introduced to computing concepts related to both the security issue and the appropriate solution to fully grasp the overall concept. After presenting the materials to students, continual review with students is also essential. This reviewal process requires exploring use-cases for the programming mechanisms presented as solutions to the security issues discussed. In addition to the security modules presented in lectures, students were given a hands-on approach to understanding the concepts through Model-Eliciting Activities (MEAs). MEAs are open-ended, problem-solving activities in which groups of three to four students work to solve realistic complex problems in a classroom setting. The semester project related to encryption and decryption was implemented into the course as an MEA. To assess the effectiveness of incorporating security modules with the MEA project into the curriculum of Computer Science I, two sections of the course were used as a control group and a treatment group. The treatment group included the security modules in lectures and the MEA project while the control group did not. To measure the overall effectiveness of incorporating security modules with the MEA project, both the instructor’s effectiveness as well as the student’s attitudes and interest were measured. For instructors, the primary question to address was to what extent do instructors change their attitudes towards student learning and their teaching practices because of the implementation of cyber security modules through MEAs. For students, the primary question to address was how the inclusion of security modules with the MEA project improved their understanding of the course materials and their interests in computer science. After implementing security modules with the MEA project, students showed a better understanding of cyber security concepts and a greater interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered, during his experience with the security modules and MEA. 
    more » « less