Pollination of passion fruit and other crops by species of carpenter bees of the genus
- NSF-PAR ID:
- 10377223
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Applied Entomology
- Volume:
- 144
- Issue:
- 10
- ISSN:
- 0931-2048
- Page Range / eLocation ID:
- p. 952-960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We describe the nesting biology of Centris (Paracentris) burgdorfi, a solitary bee that nests in sandstone in northeastern Brazil. The nest consists of a shallow tunnel with access to the brood cells. Females of C. burgdorfi made 1–7 brood cells per nest with each cell requiring 2.58 ± 0.40 (X ± SD) days to construct. The average cell-building construction time was longer when compared to other Centris species. Females were larger than males, and this difference was reflected in the size of their respective emergence cells. The temperature within C. burgdorfi nests was lower when compared to ambient temperature. Our study is the first to report the nesting biology of C. burgdorfi. The detailed behavior of the female inside the nest was also described, which is unusual in the study of solitary bee nesting biology.more » « less
-
Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.
-
Maculation on avian eggshells has the potential to serve as an identity signal, and this information may help females recognize their eggs/nest or reject foreign eggs laid by hetero‐ or conspecific brood parasites. Recognizing eggs could be adaptive in cases where birds nest in dense colonies, as reports of conspecific brood parasitism are over‐represented in colony‐nesting species. We utilized the variation in breeding biology (solitary vs. colonial breeding) and eggshell phenotype in swallows and martins (Hirundinidae) to test for correlated evolution between these traits, while also accounting for nest type, as maculation may camouflage eggs in open‐cup nests. We found that maculated eggs were more likely to be laid by species that breed socially and build open‐cup nests where maculation would be more visible than in dark cavity nests.
-
Abstract Defending offspring incurs temporal and energetic costs and can be dangerous for the parents. Accordingly, the intensity of this costly behavior should reflect the perceived risk to the reproductive output. When facing costly brood parasitism by brown‐headed cowbirds (
Molothrus ater ), where cowbirds lay eggs in heterospecific nests and cause the hosts to care for their young, yellow warblers (Setophaga petechia ) use referential “seet” calls to warn their mates of the parasitic danger. Yellow warblers of both sexes produce this call only in response to cowbirds or seet‐calling conspecifics. Seet calls are mainly produced during the laying and incubation stages of breeding, when risk of brood parasitism is highest, rather than during the nestling stage. On the other hand, general alarm calls (chips) are produced throughout the nesting cycle and are also used in conspecific interactions unrelated to nesting. We hypothesized that context shapes responses prior to breeding as well, such that yellow warblers without a mate and active nest would be less likely to respond to playbacks that simulate brood parasitism risk. To test this hypothesis, we presented playbacks of two nest threats, cowbirds (brood parasite) and blue jays (Cyanocitta cristata ; nest predator), on territories of unmated male warblers (unpaired) and male warblers with a known mate (paired). We found that unpaired males were unresponsive toward playbacks indicating nest threats, whereas paired males were significantly more aggressive and vocal toward these playbacks compared to control playbacks. However, both paired and unpaired males were vocally responsive toward chip calls, which are informative for males regardless of pairing status. Male yellow warblers appear to adjust their responses during the earliest stages of breeding depending on the contextual relevance of specific threat stimuli, and together with prior studies, our work further supports that referential seet calls are associated with stage‐specific risk of brood parasitism. -
Abstract Nest‐sharer avian brood parasites do not evict or otherwise kill host chicks, but instead inflict a range of negative effects on their nestmates that are mediated by interactions between the parasite and host life history traits. Although many of the negative fitness effects of avian brood parasitism are well documented across diverse host species, there remains a paucity of studies that have examined the impacts of parasitism across the entirety of host ontogeny (i.e., from when an egg is laid until independence). More specifically, few studies have examined the impact of brood parasitism on the pre‐ and post‐fledging development, physiology, behavior, and survival of host offspring. To help fill this knowledge gap, we assessed the effects of brood parasitism by Brown‐headed Cowbirds (
Molothrus ater ) across the ontogeny (incubation, nestling, and post‐fledging period) of nine sympatrically breeding host species in central Illinois, USA; due to sample sizes, impacts on the post‐fledging period were only examined in two of the nine species. Specifically, we examined the impact of brood parasitism on ontogenetic markers including the embryonic heart rate, hatching rate, nestling period length, nest survival, and offspring growth and development. Additionally, in species in which we found negative impacts of cowbird parasitism on host nestmate ontogeny, we examined whether the difference in adult size between parasites and their hosts and their hatching asynchrony positively predicted variation in host costs across these focal taxa. We found that costs of cowbird parasitism were most severe during early nesting stages (reduction in the host clutch or brood size) and were predicted negatively by host size and positively by incubation length. In contrast, we only found limited costs of cowbird parasitism on other stages of host ontogeny; critically, post‐fledging survival did not differ between host offspring that fledged alongside cowbirds and those that did not. Our findings (i) highlight the direct costs of cowbird parasitism on host fitness, (ii) provide evidence for when (the stage) those costs are manifested, and (iii) may help to explain why many anti‐cowbird defenses of hosts have evolved for protection from parasitism during the laying and incubation stages.