skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Electron Capture Rates in the N = 50 Region using 1D Simulations of Core-collapse Supernovae
Abstract Recent studies have highlighted the sensitivity of core-collapse supernovae (CCSNe) models to electron-capture (EC) rates on neutron-rich nuclei near theN= 50 closed-shell region. In this work, we perform a large suite of one-dimensional CCSN simulations for 200 stellar progenitors using recently updated EC rates in this region. For comparison, we repeat the simulations using two previous implementations of EC rates: a microphysical library with parametrizedN= 50 rates (LMP), and an older independent-particle approximation (IPA). We follow the simulations through shock revival up to several seconds post-bounce, and show that the EC rates produce a consistent imprint on CCSN properties, often surpassing the role of the progenitor itself. Notable impacts include the timescale of core collapse, the electron fraction and mass of the inner core at bounce, the accretion rate through the shock, the success or failure of revival, and the properties of the central compact remnant. We also compare the observable neutrino signal of the neutronization burst in a DUNE-like detector, and find consistent impacts on the counts and mean energies. Overall, the updated rates result in properties that are intermediate between LMP and IPA, and yet slightly more favorable to explosion than both.  more » « less
Award ID(s):
2209429 1927130
PAR ID:
10377275
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
939
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 15
Size(s):
Article No. 15
Sponsoring Org:
National Science Foundation
More Like this
  1. We present numerical results from a parameter study of the standing accretion shock instability (SASI), investigating the impact of general relativity (GR) on the dynamics. Using GR hydrodynamics with GR gravity, and nonrelativistic (NR) hydrodynamics with Newtonian gravity, in an idealized model setting, we vary the initial radius of the shock, and by varying its mass and radius in concert, the proto-neutron star compactness. We investigate four compactnesses expected in a post-bounce core-collapse supernova (CCSN). We find that GR leads to a longer SASI oscillation period, with ratios between the GR and NR cases as large as 1.29 for the highest- compactness suite. We also find that GR leads to a slower SASI growth rate, with ratios between the GR and NR cases as low as 0.47 for the highest-compactness suite. We discuss implications of our results for CCSN simulations. 
    more » « less
  2. We present numerical results from a parameter study of the standing accretion shock instability (SASI), investigating the impact of general relativity (GR) on the dynamics. Using GR hydrodynamics with GR gravity, and nonrelativistic (NR) hydrodynamics with Newtonian gravity, in an idealized model setting, we vary the initial radius of the shock, and by varying its mass and radius in concert, the proto-neutron star compactness. We investigate four compactnesses expected in a post-bounce core-collapse supernova (CCSN). We find that GR leads to a longer SASI oscillation period, with ratios between the GR and NR cases as large as 1.29 for the highest- compactness suite. We also find that GR leads to a slower SASI growth rate, with ratios between the GR and NR cases as low as 0.47 for the highest-compactness suite. We discuss implications of our results for CCSN simulations. 
    more » « less
  3. Abstract In order to better connect core-collapse supernova (CCSN) theory with its observational signatures, we have developed a simulation pipeline from the onset of the core collapse to beyond shock breakout from the stellar envelope. Using this framework, we present a 3D simulation study from 5 s to over 5 days following the evolution of a 17Mprogenitor, exploding with ∼1051erg of energy and ∼0.1Mof56Ni ejecta. The early explosion is highly asymmetric, expanding most prominently along the southern hemisphere. This early asymmetry is preserved to shock breakout, ∼1 day later. Breakout itself evinces strong angle-dependence, with as much as 1 day delay in the shock breakout by direction. The nickel ejecta closely tail the forward shock, with velocities at the breakout as high as ∼7000 km s−1. A delayed reverse shock forming at the H/He interface on hour timescales leads to the formation of Rayleigh–Taylor instabilities, fast-moving nickel bullets, and almost complete mixing of the metal core into the hydrogen envelope. For the first time, we illustrate the angle-dependent emergent broadband and bolometric light curves from simulations evolved in 3D in entirety, continuing through hydrodynamic shock breakout from a CCSN model of a massive stellar progenitor evolved with detailed, late-time neutrino microphysics and transport. Our case study of a single progenitor underscores that 3D simulations generically produce the cornucopia of observed asymmetries and features in CCSNe observations, while establishing the methodology to study this problem in breadth. 
    more » « less
  4. We compare the core-collapse evolution of a pair of 15.8 M☉ stars with significantly different internal structures, a consequence of the bimodal variability exhibited by massive stars during their late evolutionary stages. The 15.78 and 15.79 M☉ progenitors have core masses (masses interior to an entropy of 4 kB baryon−1) of 1.47 and 1.78 M☉ and compactness parameters ξ1.75 of 0.302 and 0.604, respectively. The core-collapse simulations are carried out in 2D to nearly 3 s postbounce and show substantial differences in the times of shock revival and explosion energies. The 15.78 M☉ model begins exploding promptly at 120 ms postbounce when a strong density decrement at the Si– Si/O shell interface, not present in the 15.79 M☉ progenitor, encounters the stalled shock. The 15.79 M☉ model takes 100 ms longer to explode but ultimately produces a more powerful explosion. Both the larger mass accretion rate and the more massive core of the 15.79 M☉ model during the first 0.8 s postbounce time result in larger νe/n ̄e luminosities and RMS energies along with a flatter and higher-density heating region. The more-energetic explosion of the 15.79 M☉ model resulted in the ejection of twice as much 56Ni. Most of the ejecta in both models are moderately proton rich, though counterintuitively the highest electron fraction (Ye = 0.61) ejecta in either model are in the less-energetic 15.78 M☉ model, while the lowest electron fraction (Ye = 0.45) ejecta in either model are in the 15.79 M☉ model. 
    more » « less
  5. We compare the core-collapse evolution of a pair of 15.8 M☉ stars with significantly different internal structures, a consequence of the bimodal variability exhibited by massive stars during their late evolutionary stages. The 15.78 and 15.79 M☉ progenitors have core masses (masses interior to an entropy of 4 kB baryon−1) of 1.47 and 1.78 M☉ and compactness parameters ξ1.75 of 0.302 and 0.604, respectively. The core-collapse simulations are carried out in 2D to nearly 3 s postbounce and show substantial differences in the times of shock revival and explosion energies. The 15.78 M☉ model begins exploding promptly at 120 ms postbounce when a strong density decrement at the Si– Si/O shell interface, not present in the 15.79 M☉ progenitor, encounters the stalled shock. The 15.79 M☉ model takes 100 ms longer to explode but ultimately produces a more powerful explosion. Both the larger mass accretion rate and the more massive core of the 15.79 M☉ model during the first 0.8 s postbounce time result in larger νe/n ̄e luminosities and RMS energies along with a flatter and higher-density heating region. The more-energetic explosion of the 15.79 M☉ model resulted in the ejection of twice as much 56Ni. Most of the ejecta in both models are moderately proton rich, though counterintuitively the highest electron fraction (Ye = 0.61) ejecta in either model are in the less-energetic 15.78 M☉ model, while the lowest electron fraction (Ye = 0.45) ejecta in either model are in the 15.79 M☉ model. 
    more » « less