skip to main content


Title: Uncovering the Intrinsic Intensity–Size Relationship of Tropical Cyclones
Abstract

The central theme of this study is to explore if and how the intensity of a tropical cyclone (TC) is related to its size. This subject has puzzled atmospheric scientists since the work of Deppermann, but the existence of this relationship still remains elusive. The improved understanding of the intensity–size relationship of TCs will help coastal communities to prepare for the maximum potential damage as both the intensity and size have important impacts on wind damages, storm surges, and flooding. This study considers 33 years (1988–2020) of TC records of maximum surface winds and radii of maximum and gale-force winds over the North Atlantic basin derived from the Extended Best Track Dataset. Analysis of these TC records reveals a robust positive correlation between loss of Earth and relative angular momentum. This finding together with the inspiration from the seminal work of Emanuel and his collaborators leads us to combine absolute angular momentum and its frictional loss as a radially invariant quantity, referred to as “effective absolute angular momentum” (eAAM), for radial profiles of TC surface winds. It is demonstrated that the eAAM model can reproduce the observed complex intensity–size relationship of TCs, which can be further reduced to a quasi-linear one after factoring out the angular momentum loss and the radius of maximum surface winds. The findings of this study would not only advance our understanding of the complex TC intensity–size relation, but also allow for operational assessments of TC severity and potential damage just using its outer wind information.

 
more » « less
NSF-PAR ID:
10377390
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
11
ISSN:
0022-4928
Page Range / eLocation ID:
p. 2881-2900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite considerable progress in tropical cyclone (TC) research, our current understanding and prediction capabilities regarding the TC intensity–size relation remain limited. This study systematically analyzes the key characteristics and performance of different types of mathematical models for TC intensity–size relations using the 6-hourly Tropical Cyclone Extended Best Track Dataset spanning 1988 to 2020. The models investigated include statistical, idealized (e.g., Rankine vortex), parametric, and theoretical models. In addition to directly comparing the solutions obtained from individual models to the observed TC records, we assess the models that can produce a unique finite-sized radial profile of surface winds for each TC record—a minimal requirement to ensure that the predicted radial profile of the surface winds would align with the observed profile. The results reveal that a sufficient condition to guarantee a unique radial profile of surface winds is that the associated model can be written as a radial invariant quantity, although it does not guarantee a finite-sized profile. Only the effective absolute angular momentum (eAAM) model, among all the models examined in this study, meets the minimum requirement. Furthermore, the solutions obtained from the eAAM model are well correlated with their observational counterparts (85 to 95%) with little systematic bias and small absolute mean errors that are very close to the observational resolution. The eAAM model’s ability to capture the complex intensity–size relation of observed TCs, in combination with these desirable features, suggests its high potential for gaining a better understanding of the underlying physics governing the observed TC intensity–size relation.

     
    more » « less
  2. Abstract The radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon can not be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases. 
    more » « less
  3. null (Ed.)
    Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage. 
    more » « less
  4. Abstract This study investigates the relationship between the azimuthally averaged kinematic structure of the tropical cyclone boundary layer (TCBL) and storm intensity, intensity change, and vortex structure above the BL. These relationships are explored using composites of airborne Doppler radar vertical profiles, which have a higher vertical resolution than typically used three-dimensional analyses and, therefore, better capture TCBL structure. Results show that the BL height, defined by the depth of the inflow layer, is greater in weak storms than in strong storms. The inflow layer outside the radius of maximum tangential wind speed (RMW) is deeper in intensifying storms than in nonintensifying storms at an early stage. The peak BL convergence inside the RMW is larger in intensifying storms than in nonintensifying storms. Updrafts originating from the TCBL are concentrated near the RMW for intensifying TCs, while updrafts span a large radial range outside the RMW for nonintensifying TCs. In terms of vortex structure above the BL, storms with a quickly decaying radial profile of tangential wind outside the RMW (“narrow” vortices) tend to have a deeper inflow layer outside the RMW, stronger inflow near the RMW, deeper and more concentrated strong updrafts close to the RMW, and weaker inflow in the outer core region than those with a slowly decaying tangential wind profile (“broad” vortices). The narrow TCs also tend to intensify faster than broad TCs, suggesting that a key relationship exists among vortex shape, the BL kinematic structure, and TC intensity change. This relationship is further explored by comparisons of absolute angular momentum budget terms for each vortex shape. 
    more » « less
  5. Abstract

    In this study, the boundary layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer, is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal-wind balance, with eyewall convection coming into moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies, as found recently based on idealized numerical simulations. An ad hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic Ocean and eastern and western North Pacific Ocean. As compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as seen in observations.

     
    more » « less