Abstract Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection.
more »
« less
Conditions for Convective Deep Inflow
Abstract Observations and cloud‐resolving simulations suggest that a convective updraft structure drawing mass from a deep lower‐tropospheric layer occurs over a wide range of conditions. This occurs for both mesoscale convective systems (MCSs) and less‐organized convection, raising the question: is there a simple, universal characteristic governing the deep inflow? Here, we argue that nonlocal dynamics of the response to buoyancy are key. For precipitating deep‐convective features including horizontal scales comparable to a substantial fraction of the troposphere depth, the response to buoyancy tends to yield deep inflow into the updraft mass flux. Precipitation features in this range of scales are found to dominate contributions to observed convective precipitation for both MCS and less‐organized convection. The importance of such nonlocal dynamics implies thinking beyond parcel models with small‐scale turbulence for representation of convection in climate models. Solutions here lend support to investment in parameterizations at a complexity between conventional and superparameterization.
more »
« less
- Award ID(s):
- 1936810
- PAR ID:
- 10377403
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A formulation based on the anelastic approximation yields time-dependent simulations of convective updrafts, downdrafts, and other aspects of convection, such as stratiform layers, under reasonably flexible geometry assumptions. Termed anelastic convective entities (ACEs), such realizations can aid understanding of convective processes and potentially provide time-dependent building blocks for parameterization at a complexity between steady-plume models and cloud-resolving simulations. Formulation and behavior of single-ACE cases are addressed here, with multi-ACE cases in Part II. Even for cases deliberately formulated to provide a comparison to a traditional convective plume, ACE behavior differs substantially because dynamic entrainment, detrainment, and nonhydrostatic perturbation pressure are consistently included. Entrainment varies with the evolution of the entity, but behavior akin to deep-inflow effects noted in observations emerges naturally. The magnitude of the mass flux with nonlocal pressure effects consistently included is smaller than for a corresponding traditional steady-plume model. ACE solutions do not necessarily approach a steady state even with a fixed environment but can exhibit chains of rising thermals and even episodic deep convection. The inclusion of nonlocal dynamics allows a developing updraft to tunnel through layers with substantial convective inhibition (CIN). For cases of nighttime continental convection using GoAmazon soundings, this is found to greatly reduce the effect of surface-inversion CIN. The observed convective cold top is seen as an inherent property of the solution, both in a transient, rising phase and as a persistent feature in mature deep convection.more » « less
-
Abstract We examine the influence of convective organization on extreme tropical precipitation events using model simulation data from the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP). At a given SST, simulations with convective organization have more intense precipitation extremes than those without it at all scales, including instantaneous precipitation at the grid resolution (3 km). Across large‐domain simulations with convective organization, models with explicit convection exhibit better agreement in the response of extreme precipitation rates to warming than those with parameterized convection. Among models with explicit convection, deviations from the Clausius‐Clapeyron scaling of precipitation extremes with warming are correlated with changes in organization, especially on large spatiotemporal scales. Though the RCEMIP ensemble is nearly evenly split between CRMs which become more and less organized with warming, most of the models which show increased organization with warming also allow super‐CC scaling of precipitation extremes. We also apply an established precipitation extremes scaling to understand changes in the extreme condensation events leading to extreme precipitation. Increased organization leads to greater increases in precipitation extremes by enhancing both the dynamic and implied efficiency contributions. We link these contributions to environmental variables modified by the presence of organization and suggest that increases in moisture in the aggregated region may be responsible for enhancing both convective updraft area fraction and precipitation efficiency. By leveraging a controlled intercomparison of models with both explicit and parameterized convection, this work provides strong evidence for the amplification of tropical precipitation extremes and their response to warming by convective organization.more » « less
-
Abstract Using idealized simulations, we examine the storm-scale wind field response of a dry, hurricane-like vortex to prescribed stratiform heating profiles that mimic tropical cyclone (TC) spiral rainbands. These profiles were stationary with respect to the storm center to represent the diabatic forcing imposed by a quasi-stationary rainband complex. The first profile was typical of stratiform precipitation with heating above and cooling below the melting level. The vortex response included a mesoscale descending inflow and a midlevel tangential jet, consistent with previous studies. An additional response was an inward-spiraling low-level updraft radially inside the rainband heating. The second profile was a modified stratiform heating structure derived from observations and consisted of a diagonal dipole of heating and cooling. The same features were found with stronger magnitudes and larger vertical extents. The dynamics and implications of the forced low-level updraft were examined. This updraft was driven by buoyancy advection because of the stratiform-induced low-level cold pool. The stationary nature of the rainband diabatic forcing played an important role in modulating the required temperature and pressure anomalies to sustain this updraft. Simulations with moisture and full microphysics confirmed that this low-level updraft response was robust and capable of triggering sustained deep convection that could further impact the storm evolution, including having a potential role in secondary eyewall formation.more » « less
-
Abstract Proper prediction of the inflow layer of deep convective storms is critical for understanding their potential updraft properties and likelihood of producing severe weather. In this study, an existing forecast metric known as the effective inflow layer (EIL) is evaluated with an emphasis on its performance for supercell thunderstorms, where both buoyancy and dynamic pressure accelerations are common. A total of 15 idealized simulations with a range of realistic base states are performed. Using an array of passive fluid tracers initialized at various vertical levels, the proportion of simulated updraft core air originating from the EIL is determined. Results suggest that the EIL metric performs well in forecasting peak updraft origin height, particularly for supercell updrafts. Moreover, the EIL metric displays consistent skill across a range of updraft core definitions. The EIL has a tendency to perform better as convective available potential energy, deep-layer shear, and EIL depth are increased in the near-storm environment. Modifications to further constrain the EIL based on the most-unstable parcel height or storm-relative flow may lead to marginal improvements for the most stringent updraft core definitions. Finally, effects of the near-storm environment on low-level and peak updraft forcing and intensity are discussed.more » « less
An official website of the United States government
