skip to main content


Title: Silk-Cellulose Acetate Biocomposite Materials Regenerated from Ionic Liquid
The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications.  more » « less
Award ID(s):
1809541
NSF-PAR ID:
10377427
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
13
Issue:
17
ISSN:
2073-4360
Page Range / eLocation ID:
2911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields. 
    more » « less
  2. null (Ed.)
    Blended biocomposites created from the electrostatic and hydrophobic interactions between polysaccharides and structural proteins exhibit useful and unique properties. However, engineering these biopolymers into applicable forms is challenging due to the coupling of the material’s physicochemical properties to its morphology, and the undertaking that comes with controlling this. In this particular study, numerous properties of the Bombyx mori silk and microcrystalline cellulose biocomposites blended using ionic liquid and regenerated with various coagulation agents were investigated. Specifically, the relationship between the composition of polysaccharide-protein bio-electrolyte membranes and the resulting morphology and ionic conductivity is explored using numerous characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, atomic force microscopy (AFM) based nanoindentation, and dielectric relaxation spectroscopy (DRS). The results revealed that when silk is the dominating component in the biocomposite, the ionic conductivity is higher, which also correlates with higher β-sheet content. However, when cellulose becomes the dominating component in the biocomposite, this relationship is not observed; instead, cellulose semicrystallinity and mechanical properties dominate the ionic conduction. 
    more » « less
  3. Abstract

    Controlled self‐assembly of bio‐sourced nanocolloids is of high importance for the development of sustainable and low‐cost functional materials but controlling nanocomposite fabrication with both satisfactory optical properties and composition remains challenging. Silk fibroin (SF) and cellulose nanocrystals (CNCs) have independently demonstrated their ability to produce high‐quality photonic materials, in part due to their low absorbance and their transparency in the visible range. While SF is able to replicate inverse structures by high‐resolution nano‐templating, CNCs can spontaneously assemble into cholesteric liquid crystalline structures that are retained upon solvent evaporation, yielding photonic films. In this work, the conditions of successful co‐assembly of regenerated SF, extracted from silkworm silk, with CNCs extracted from cotton, are investigated. Their co‐assembly is investigated for various relative concentration ratios and pH, combining polarized optical microscopy and spectroscopy, SEM, and other characterization techniques (XRD, ATR‐FTIR, TGA). The appearance of photonic properties is observed when CNC and SF are assembled at pH ≥ 4.15, highlighting the importance of suppressing attractive electrostatic interactions between the two species for an organized structure to emerge. Beyond its fundamental motivations for colloidal co‐assembly with structural proteins, this work is relevant to design sustainable optical materials compatible with food packaging coatings and edible coloring pigments.

     
    more » « less
  4. null (Ed.)
    In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research. 
    more » « less
  5. In this study, the amphiphilic salt lithium trifluoromethanesulfonylimide octadecane (C18LiTFSI) was used as a basis to investigate the effects of anion density and cation coordination sites within blended electrolytes with strong ionic aggregation. C18LiTFSI was previously reported as a single-component, ion-condensed electrolyte with a wide layered liquid crystalline phase regime. Three additive molecules with varyingly sized polar sulfonyl groups attached to an octodecane-tail were synthesized and mixed with C18LiTFSI. The thermal properties, morphology, and ionic conductivity of the blended electrolytes were characterized. It was found that the blended electrolytes exhibited layered liquid crystalline morphology over a narrower temperature range than the pure salt, and the ionic conductivity of the blended liquid crystalline electrolytes were generally lower than that of the pure salt. Surprising, the additives were found to have the greatest effect on the bulk ionic conductivity of the semicrystalline phase of the electrolytes. Addition of minor fractions of methylsulfonyloctadecane to C18LiTFSI resulted in increases in conductivity of over two orders of magnitude at room temperature, while addition of ethylsulfonyloctadecane or isopropylsulfonyloctadecane with the larger head group resulted in decreased ionic conductivity over the entire composition space and temperature range investigated. 
    more » « less