skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Silk-Cellulose Acetate Biocomposite Materials Regenerated from Ionic Liquid
The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications.  more » « less
Award ID(s):
1809541
PAR ID:
10377427
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
13
Issue:
17
ISSN:
2073-4360
Page Range / eLocation ID:
2911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields. 
    more » « less
  2. null (Ed.)
    Blended biocomposites created from the electrostatic and hydrophobic interactions between polysaccharides and structural proteins exhibit useful and unique properties. However, engineering these biopolymers into applicable forms is challenging due to the coupling of the material’s physicochemical properties to its morphology, and the undertaking that comes with controlling this. In this particular study, numerous properties of the Bombyx mori silk and microcrystalline cellulose biocomposites blended using ionic liquid and regenerated with various coagulation agents were investigated. Specifically, the relationship between the composition of polysaccharide-protein bio-electrolyte membranes and the resulting morphology and ionic conductivity is explored using numerous characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, atomic force microscopy (AFM) based nanoindentation, and dielectric relaxation spectroscopy (DRS). The results revealed that when silk is the dominating component in the biocomposite, the ionic conductivity is higher, which also correlates with higher β-sheet content. However, when cellulose becomes the dominating component in the biocomposite, this relationship is not observed; instead, cellulose semicrystallinity and mechanical properties dominate the ionic conduction. 
    more » « less
  3. In this study, the amphiphilic salt lithium trifluoromethanesulfonylimide octadecane (C18LiTFSI) was used as a basis to investigate the effects of anion density and cation coordination sites within blended electrolytes with strong ionic aggregation. C18LiTFSI was previously reported as a single-component, ion-condensed electrolyte with a wide layered liquid crystalline phase regime. Three additive molecules with varyingly sized polar sulfonyl groups attached to an octodecane-tail were synthesized and mixed with C18LiTFSI. The thermal properties, morphology, and ionic conductivity of the blended electrolytes were characterized. It was found that the blended electrolytes exhibited layered liquid crystalline morphology over a narrower temperature range than the pure salt, and the ionic conductivity of the blended liquid crystalline electrolytes were generally lower than that of the pure salt. Surprising, the additives were found to have the greatest effect on the bulk ionic conductivity of the semicrystalline phase of the electrolytes. Addition of minor fractions of methylsulfonyloctadecane to C18LiTFSI resulted in increases in conductivity of over two orders of magnitude at room temperature, while addition of ethylsulfonyloctadecane or isopropylsulfonyloctadecane with the larger head group resulted in decreased ionic conductivity over the entire composition space and temperature range investigated. 
    more » « less
  4. Natural proteins present a sustainable and biocompatible alternative to conventional fossil fuel-derived plastics, with versatile applications in fields ranging from medicine to food packaging. Extending our previous research on silk–corn zein composites, this study utilizes soy protein—another plant protein extensively employed within biomedical applications—in conjunction with silk fibroin proteins extracted from a variety of domestic (Mori and Thai) and wild (Muga, Tussah, and Eri) silkworm species. By combining these proteins in varying ratios (0%, 10%, 25%, 50%, 75%, 90%, and 100%), silk–soy films were successfully fabricated with high miscibility. The structural and thermal stability of these films was confirmed through various characterization techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Structural refinements were then achieved through post-water annealing treatments. After annealing, it was observed that when soy protein was introduced into both types of silk, the silks exhibited a greater amount of intermolecular and intramolecular β-sheet content. This phenomenon can be attributed to soy’s intrinsic ability to self-assemble into β-sheets through electrostatic and hydrophobic interactions, which also improved the overall thermal stability and morphology of the composite films. The unique self-assembling properties of soy and its ability to promote β-sheet formation facilitate the customization of the silk source and the soy-to-silk ratio. This adaptability establishes protein-based thin films as a versatile and sustainable option for diverse applications in fields such as medicine, tissue engineering, food packaging, and beyond. 
    more » « less
  5. As the average life expectancy continues to increase, so does the need for resorbable materials designed to treat, augment, or replace components and functions of the body. Naturally occurring biopolymers such as silks are already attractive candidates due to natural abundance and high biocompatibility accompanied by physical properties which are easily modulated through blending with another polymer. In this paper, the authors report on the fabrication of biocomposite materials made from binary blends of Bombyx mori silk fibroin (SF) protein and renewably sourced low molecular weight nylon 610 and high molecular weight nylon 1010. Films were characterized using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Results of this study demonstrated that enhanced structural and thermal properties were achievable in composite films SF-N610/N1010 due to their chemical similarity and the possible formation of hydrogen bonds between nylon and silk molecular chains. This study provides useful insight into the sustainable design of functional composite materials for biomedical and green technologies. 
    more » « less