skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sterane and hopane biomarkers capture microbial transformations of complex hydrocarbons in young hydrothermal Guaymas Basin sediments
Abstract In Guaymas Basin, organic-rich hydrothermal sediments produce complex hydrocarbon mixtures including saturated, aromatic and alkylated aromatic compounds. We examined sediments from push cores from Guyamas sites with distinct temperature and geochemistry profiles to gain a better understanding on abiotic and biological hydrocarbon alteration. Here we provide evidence for biodegradation of hopanoids, producing saturated hydrocarbons like drimane and homodrimane as intermediate products. These sesquiterpene by-products are present throughout cooler sediments, but their relative abundance is drastically reduced within hotter hydrothermal sediments, likely due to hydrothermal mobilization. Within the sterane pool we detect a trend toward aromatization of steroidal compounds within hotter sediments. The changes in hopane and sterane biomarker composition at different sites reflect temperature-related differences in geochemical and microbial hydrocarbon alterations. In contrast to traditionally observed microbial biodegradation patterns that may extend over hundreds of meters in subsurface oil reservoirs, Guaymas Basin shows highly compressed changes in surficial sediments.  more » « less
Award ID(s):
1829903
PAR ID:
10377458
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sediment and pore water samples from all drill sites of International Ocean Discovery Program (IODP) Expedition 385 were analyzed quantitatively for aliphatic hydrocarbons, petroleum (C9–C44) hydrocarbons, and aromatic and polyaromatic compounds. All hydrocarbon classes showed concentration peaks in deep, hot sediments just above and below deeply buried sills (Sites U1545 and U1546), indicating that they were formed by thermal maturation of buried organic matter in the thermal aureole of sill intrusion and have, to a large extent, remained in situ. Plotting hydrocarbon concentrations against in situ temperature shows a pronounced increase in concentration between 65° and 80°C, the thermal limit of hydrocarbon-degrading microbial populations. A smaller hydrocarbon maximum is associated with surficial sediments: within the upper 4 m of the sediment column, the concentrations of total saturated hydrocarbons and of total petroleum hydrocarbons were almost always higher compared to the next sediment samples in downhole sequence, compatible with biogenic hydrocarbon input that reaches all drill sites in Guaymas Basin. The U-shaped hydrocarbon profiles suggest a biological filter that degrades surficial hydrocarbon input and deeply sourced hydrocarbons as soon as the temperature regime in gradually cooling, slowly accumulating sediments permits microbial activity. 
    more » « less
  2. Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin. 
    more » « less
  3. The surficial hydrothermal sediments of Guaymas Basin harbor complex microbial communities where oxidative and reductive nitrogen, sulfur, and carbon-cycling populations and processes overlap and coexist. Here, we resolve microbial community profiles in hydrothermal sediment cores of Guaymas Basin on a scale of 2 millimeters, using Denaturing Gradient Gel Electrophoresis (DGGE) to visualize the rapid downcore changes among dominant bacteria and archaea. DGGE analysis of bacterial 16S rRNA gene amplicons identified free-living and syntrophic deltaproteobacterial sulfate-reducing bacteria, fermentative Cytophagales, members of the Chloroflexi (Thermoflexia), Aminicenantes, and uncultured sediment clades. The DGGE pattern indicates a gradually changing downcore community structure where small changes on a 2-millimeter scale accumulate to significantly changing populations within the top 4 cm sediment layer. Functional gene DGGE analyses identified anaerobic methane-oxidizing archaea (ANME) based on methyl-coenzyme M reductase genes, and members of the Betaproteobacteria and Thaumarchaeota based on bacterial and archaeal ammonia monooxygenase genes, respectively. The co-existence and overlapping habitat range of aerobic, nitrifying, sulfate-reducing and fermentative bacteria and archaea, including thermophiles, in the surficial sediments is consistent with dynamic redox and thermal gradients that sustain highly complex microbial communities in the hydrothermal sediments of Guaymas Basin. 
    more » « less
  4. Microbes in Guaymas Basin (Gulf of California) hydrothermal sediments thrive on hydrocarbons and sulfur and experience steep, fluctuating temperature and chemical gradients. The functional capacities of communities inhabiting this dynamic habitat are largely unknown. Here, we reconstructed 551 genomes from hydrothermally influenced, and nearby cold sediments belonging to 56 phyla (40 uncultured). These genomes comprise 22 unique lineages, including five new candidate phyla. In contrast to findings from cold hydrocarbon seeps, hydrothermal-associated communities are more diverse and archaea dominate over bacteria. Genome-based metabolic inferences provide first insights into the ecological niches of these uncultured microbes, including methane cycling in new Crenarchaeota and alkane utilization in ANME-1. These communities are shaped by a high biodiversity, partitioning among nitrogen and sulfur pathways and redundancy in core carbon-processing pathways. The dynamic sediments select for distinctive microbial communities that stand out by expansive biodiversity, and open up new physiological perspectives into hydrothermal ecosystem function. 
    more » « less
  5. null (Ed.)
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface. 
    more » « less