skip to main content

Title: Open Hardware in Science: The Benefits of Open Electronics
Abstract

Openly shared low-cost electronic hardware applications, known as open electronics, have sparked a new open-source movement, with much untapped potential to advance scientific research. Initially designed to appeal to electronic hobbyists, open electronics have formed a global “maker” community and are increasingly used in science and industry. In this perspective article, we review the current costs and benefits of open electronics for use in scientific research ranging from the experimental to the theoretical sciences. We discuss how user-made electronic applications can help (I) individual researchers, by increasing the customization, efficiency, and scalability of experiments, while improving data quantity and quality; (II) scientific institutions, by improving access to customizable high-end technologies, sustainability, visibility, and interdisciplinary collaboration potential; and (III) the scientific community, by improving transparency and reproducibility, helping decouple research capacity from funding, increasing innovation, and improving collaboration potential among researchers and the public. We further discuss how current barriers like poor awareness, knowledge access, and time investments can be resolved by increased documentation and collaboration, and provide guidelines for academics to enter this emerging field. We highlight that open electronics are a promising and powerful tool to help scientific research to become more innovative and reproducible and offer a more » key practical solution to improve democratic access to science.

« less
Authors:
; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10377672
Journal Name:
Integrative and Comparative Biology
Volume:
62
Issue:
4
Page Range or eLocation-ID:
p. 1061-1075
ISSN:
1540-7063
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: Freshwater research in Latin America has been increasing in recent years, with a large participation of scientists based on local institutions. However, researchers in the region are facing diverse challenges, and we lack a regional overview of the status of freshwater research. Objective: To address this, we surveyed researchers in the region to assess the current activity and challenges faced by the scientific community. We were interested in understanding (1) the type of research currently taking place in the region, (2) the major research gaps, as viewed by local researchers, and (3) the main limitations or obstacles slowing the development of freshwater science in the region. Methods: We prepared a questionnaire with 26 questions regarding the background of participants, their ongoing research priorities, the products generated from their research, and the major limitations they are facing as researchers. Results: We obtained 105 answers from researchers in 19 Latin American countries. Some of the important trends identified included: (1) a focus on stream ecosystems under agricultural and natural forest; (2) emphasis on biodiversity assessment and species inventories; (3) limited ecological research, mostly centered on litter decomposition and food web studies; and (4) communicating research in the form of peer-reviewed papersmore »and reports in gray literature. Major limitations to the scientific activity included: (1) language, with a majority of respondents considering their handling of English a handicap; (2) limited access to research equipment; (3) lack of tools, such as taxonomic keys; and (4) limited research funding. Research needs and priorities resulted in three major areas in need of attention: (1) developing taxonomy and systematics; (2) improving our current understanding of ecology and natural history; and (3) understanding species distributions and biodiversity patterns. Conclusions: Latin America has an active community of scientists. There is a need to diversify research topics, without abandoning traditional research areas (e.g., taxonomy, species distribution). We advocate for more collaboration among scientists with similar research goals, regardless of their affiliation. Improving communication and collaboration among universities and countries within Latin America will certainly facilitate overcoming obstacles and will help shaping a brighter future for freshwater research, and sciences in general, in the region.« less
  2. The Reproducible Software Environment (Resen) is an open-source software tool enabling computationally reproducible scientific results in the geospace science community. Resen was developed as part of a larger project called the Integrated Geoscience Observatory (InGeO), which aims to help geospace researchers bring together diverse datasets from disparate instruments and data repositories, with software tools contributed by instrument providers and community members. The main goals of InGeO are to remove barriers in accessing, processing, and visualizing geospatially resolved data from multiple sources using methodologies and tools that are reproducible. The architecture of Resen combines two mainstream open source software tools, Docker and JupyterHub, to produce a software environment that not only facilitates computationally reproducible research results, but also facilitates effective collaboration among researchers. In this technical paper, we discuss some challenges for performing reproducible science and a potential solution via Resen, which is demonstrated using a case study of a geospace event. Finally we discuss how the usage of mainstream, open-source technologies seems to provide a sustainable path towards enabling reproducible science compared to proprietary and closed-source software.
  3. Abstract We investigate the link between individual differences in science reasoning skills and mock jurors’ deliberation behavior; specifically, how much they talk about the scientific evidence presented in a complicated, ecologically valid case during deliberation. Consistent with our preregistered hypothesis, mock jurors strong in scientific reasoning discussed the scientific evidence more during deliberation than those with weaker science reasoning skills. Summary With increasing frequency, legal disputes involve complex scientific information (Faigman et al., 2014; Federal Judicial Center, 2011; National Research Council, 2009). Yet people often have trouble consuming scientific information effectively (McAuliff et al., 2009; National Science Board, 2014; Resnick et al., 2016). Individual differences in reasoning styles and skills can affect how people comprehend complex evidence (e.g., Hans, Kaye, Dann, Farley, Alberston, 2011; McAuliff & Kovera, 2008). Recently, scholars have highlighted the importance of studying group deliberation contexts as well as individual decision contexts (Salerno & Diamond, 2010; Kovera, 2017). If individual differences influence how jurors understand scientific evidence, it invites questions about how these individual differences may affect the way jurors discuss science during group deliberations. The purpose of the current study was to examine how individual differences in the way people process scientific information affects the extentmore »to which jurors discuss scientific evidence during deliberations. Methods We preregistered the data collection plan, sample size, and hypotheses on the Open Science Framework. Jury-eligible community participants (303 jurors across 50 juries) from Phoenix, AZ (Mage=37.4, SD=16.9; 58.8% female; 51.5% White, 23.7% Latinx, 9.9% African-American, 4.3% Asian) were paid $55 for a 3-hour mock jury study. Participants completed a set of individual questionnaires related to science reasoning skills and attitudes toward science prior to watching a 45-minute mock armed-robbery trial. The trial included various pieces of evidence and testimony, including forensic experts testifying about mitochondrial DNA evidence (mtDNA; based on Hans et al. 2011 materials). Participants were then given 45 minutes to deliberate. The deliberations were video recorded and transcribed to text for analysis. We analyzed the deliberation content for discussions related to the scientific evidence presented during trial. We hypothesized that those with stronger scientific and numeric reasoning skills, higher need for cognition, and more positive views towards science would discuss scientific evidence more than their counterparts during deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by the National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. Coding We identified verbal utterances related to the scientific evidence presented in court. For instance, references to DNA evidence in general (e.g. nuclear DNA being more conclusive than mtDNA), the database that was used to compare the DNA sample (e.g. the database size, how representative it was), exclusion rates (e.g. how many other people could not be excluded as a possible match), and the forensic DNA experts (e.g. how credible they were perceived). We used word count to operationalize the extent to which each juror discussed scientific information. First we calculated the total word count for each complete jury deliberation transcript. Based on the above coding scheme we determined the number of words each juror spent discussing scientific information. To compare across juries, we wanted to account for the differing length of deliberation; thus, we calculated each juror’s scientific deliberation word count as a proportion of their jury’s total word count. Results On average, jurors discussed the science for about 4% of their total deliberation (SD=4%, range 0-22%). We regressed proportion of the deliberation jurors spend discussing scientific information on the four individual difference measures (i.e., SRS, NFC, WNS, ATS). Using the adjusted R-squared, the measures significantly accounted for 5.5% of the variability in scientific information deliberation discussion, SE=0.04, F(4, 199)=3.93, p=0.004. When controlling for all other variables in the model, the Scientific Reasoning Scale was the only measure that remained significant, b=0.003, SE=0.001, t(203)=2.02, p=0.045. To analyze how much variability each measure accounted for, we performed a stepwise regression, with NFC entered at step 1, ATS entered at step 2, WNS entered at step 3, and SRS entered at step 4. At step 1, NFC accounted for 2.4% of the variability, F(1, 202)=5.95, p=0.02. At step 2, ATS did not significantly account for any additional variability. At step 3, WNS accounted for an additional 2.4% of variability, ΔF(1, 200)=5.02, p=0.03. Finally, at step 4, SRS significantly accounted for an additional 1.9% of variability in scientific information discussion, ΔF(1, 199)=4.06, p=0.045, total adjusted R-squared of 0.055. Discussion This study provides additional support for previous findings that scientific reasoning skills affect the way jurors comprehend and use scientific evidence. It expands on previous findings by suggesting that these individual differences also impact the way scientific evidence is discussed during juror deliberations. In addition, this study advances the literature by identifying Scientific Reasoning Skills as a potentially more robust explanatory individual differences variable than more well-studied constructs like Need for Cognition in jury research. Our next steps for this research, which we plan to present at AP-LS as part of this presentation, incudes further analysis of the deliberation content (e.g., not just the mention of, but the accuracy of the references to scientific evidence in discussion). We are currently coding this data with a software program called Noldus Observer XT, which will allow us to present more sophisticated results from this data during the presentation. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills affect how much jurors discuss scientific evidence during deliberation.« less
  4. Abstract

    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillonet al2017J. Phys. D: Appl. Phys.50043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 versionmore »we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation.

    « less
  5. Abstract

    The science of science has attracted growing research interests, partly due to the increasing availability of large-scale datasets capturing the innerworkings of science. These datasets, and the numerous linkages among them, enable researchers to ask a range of fascinating questions about how science works and where innovation occurs. Yet as datasets grow, it becomes increasingly difficult to track available sources and linkages across datasets. Here we present SciSciNet, a large-scale open data lake for the science of science research, covering over 134M scientific publications and millions of external linkages to funding and public uses. We offer detailed documentation of pre-processing steps and analytical choices in constructing the data lake. We further supplement the data lake by computing frequently used measures in the literature, illustrating how researchers may contribute collectively to enriching the data lake. Overall, this data lake serves as an initial but useful resource for the field, by lowering the barrier to entry, reducing duplication of efforts in data processing and measurements, improving the robustness and replicability of empirical claims, and broadening the diversity and representation of ideas in the field.