skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network‐regulated organ allometry: The developmental regulation of morphological scaling
Abstract Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis‐regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size‐regulatory factors that act directly on multiple growing traits (trait‐autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well‐established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network‐regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under:Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and TimingComparative Development and Evolution > Organ System Comparisons Between Species  more » « less
Award ID(s):
1952385 1901727
PAR ID:
10377712
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Developmental Biology
Volume:
10
Issue:
3
ISSN:
1759-7684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Mature leaf area (LA) is a showcase of diversity – varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA.We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal ‘developmental traits’: initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments.Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade‐offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade‐offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild‐type comparisons showed these trade‐offs have a genetic basis in Arabidopsis.Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts. 
    more » « less
  2. Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Predator and prey traits are important determinants of the outcomes of trophic interactions. In turn, the outcomes of trophic interactions shape predator and prey trait evolution. How species' traits respond to selection from trophic interactions depends crucially on whether and how heritable species' traits are and their genetic correlations. Of the many traits influencing the outcomes of trophic interactions, body size and movement traits have emerged as key traits. Yet, how these traits shape and are shaped by trophic interactions is unclear, as few studies have simultaneously measured the impacts of these traits on the outcomes of trophic interactions, their heritability, and their correlations within the same system.We used outcrossed lines of the ciliate protistParamecium caudatumfrom natural populations to examine variation in morphology and movement behaviour, the heritability of that variation, and its effects onParameciumsusceptibility to predation by the copepodMacrocyclops albidus.We found that theParameciumlines exhibited heritable variation in body size and movement traits. In contrast to expectations from allometric relationships, body size and movement speed showed little covariance among clonal lines. The proportion ofParameciumconsumed by copepods was positively associated withParameciumbody size and velocity but with an interaction such that greater velocities led to greater predation risk for large body‐sized paramecia but did not alter predation risk for smaller paramecia. The proportion of paramecia consumed was not related to copepod body size. These patterns of predation risk and heritable trait variation in paramecia suggest that copepod predation may act as a selective force operating independently on movement and body size and generating the strongest selection against large, high‐velocity paramecia.Our results illustrate how ecology and genetics can shape potential natural selection on prey traits through the outcomes of trophic interactions. Further simultaneous measures of predation outcomes, traits, and their quantitative genetics will provide insights into the evolutionary ecology of species interactions and their eco‐evolutionary consequences. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Intraspecific trait variation (ITV) is an increasingly important aspect of biodiversity and can provide a more complete perspective on how abiotic and biotic processes affect individuals, species' niches and ultimately community‐level structure than traditional uses of trait means. Body size serves as a proxy for a suite of traits that govern species' niches. Distributions of co‐occurring species body sizes can inform niche overlap, relate to species richness and uncover mechanistic drivers of diversity.We leveraged individual‐level body size (length) in freshwater fishes and environmental data from the National Ecological Observatory Network (NEON) for 17 lakes and streams in the contiguous United States to explore how abiotic and biotic factors influence fish species richness and trait distributions of body size. We calculated key abiotic (climate, productivity, land use) and biotic (phylogenetic diversity, trait diversity, community‐level overlap of trait probability densities) variables for each site to test hypotheses about drivers of ITV in body size and fish diversity.Abiotic variables were consistently important in explaining variation in fish body size and species richness across sites. In particular, productivity (as chlorophyll) was a key variable in explaining variation in body size trait richness, evenness and divergence, as well as species richness.This study yields new insights into continental‐scale patterns of freshwater fishes, possible only by leveraging the paired high frequency, in situ abiotic data and individual‐level traits collected by NEON. 
    more » « less
  5. Abstract Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect thesizeof dung beetle horns also recapitulate the effect of hornshapeallometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g.,doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g.,Distal‐less,dachs) failed to align with allometry, implicating these pathways in potentially scaling‐independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity. 
    more » « less