skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linescan Lattice Microscopy: A Technique for the Accurate Measurement and Mapping of Lattice Spacing and Strain with Atomic Force Microscopy
Award ID(s):
1761874
PAR ID:
10377715
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Langmuir
Volume:
37
Issue:
27
ISSN:
0743-7463
Page Range / eLocation ID:
8261 to 8269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate fermionic Mott insulators in a geometrically frustrated triangular lattice, a paradigm model system for studying spin liquids and spontaneous time-reversal symmetry breaking. Our study demonstrates the preparation of triangular Mott insulators and reveals antiferromagnetic spin-spin correlations among all nearest neighbors. We employ a real-space triangular-geometry quantum gas microscope to measure density and spin observables. Comparing experimental results with calculations based on numerical linked cluster expansions and quantum Monte Carlo techniques, we demonstrate thermometry in the frustrated system. Our experimental platform introduces an alternative approach to frustrated lattices which paves the way for future investigations of exotic quantum magnetism which may lead to a direct detection of quantum spin liquids in Hubbard systems. 
    more » « less
  2. Abstract We introduce a new approach to the numerical simulation of Scanning Transmission Electron Microscopy images. The Lattice Multislice Algorithm takes advantage of the fact that the electron waves passing through the specimen have limited bandwidth and therefore can be approximated very well by a low-dimensional linear space spanned by translations of a well-localized function. Just like in the PRISM algorithm recently published by C. Ophus, we utilize the linearity of the Schrödinger equation but perform the approximations with functions that are well localized in real space instead of Fourier space. This way, we achieve a similar computational speedup as PRISM, but at a much lower memory consumption and reduced numerical error due to avoiding virtual copies of the probe waves interfering with the result. Our approach also facilitates faster recomputations if local changes are made to the specimen such as changing a single atomic column. 
    more » « less
  3. null (Ed.)