Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) show LPe is commonly larger than Lα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains.
more »
« less
The extent to which soil hydraulics can explain ecohydrological separation
Abstract Field measurements of hydrologic tracers indicate varying magnitudes of geochemical separation between subsurface pore waters. The potential for conventional soil physics alone to explain isotopic differences between preferential flow and tightly-bound water remains unclear. Here, we explore physical drivers of isotopic separations using 650 different model configurations of soil, climate, and mobile/immobile soil-water domain characteristics, without confounding fractionation or plant uptake effects. We find simulations with coarser soils and less precipitation led to reduced separation between pore spaces and drainage. Amplified separations are found with larger immobile domains and, to a lesser extent, higher mobile-immobile transfer rates. Nonetheless, isotopic separations remained small (<4‰ for δ2H) across simulations, indicating that contrasting transport dynamics generate limited geochemical differences. Therefore, conventional soil physics alone are unlikely to explain large ecohydrological separations observed elsewhere, and further efforts aimed at reducing methodological artifacts, refining understanding of fractionation processes, and investigating new physiochemical mechanisms are needed.
more »
« less
- Award ID(s):
- 1802885
- PAR ID:
- 10377767
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Loss of small mineral particles from soil has been suggested as a process that can produce net isotopic fractionation in the remaining soil. We extracted water dispersible colloids (WDCs) from bulk soil collected at the Susquehanna/Shale Hills Critical Zone Observatory (SSHO) and measured their Fe isotopic composition for comparison to published data from the site. The goal was to explain soil δ56Fe values that become lighter as Fe is lost from soil. The range of δ56Fe values for WDCs was 0.22 to 0.59 ‰, barely intersecting the value of ~0.8 ± 0.3‰ predicted by mass balance for particulate Fe loss by a previous study. The WDCs extracted likely represent a mixture of unfractionated Fe inherited from shale minerals and secondary Fe fractionated by weathering zone processes. Thus, although the WDC compositions do not confirm small mineral particle losses as causing overall Fe isotope fractionation in SSHO soils, they are compatible with that interpretation.more » « less
-
Abstract Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both large‐scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between large‐scale ocean and atmospheric circulation and smaller‐scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotope‐enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850–2005 period, iCESM1 correctly captures the late‐twentieth‐century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotope‐enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.more » « less
-
Abstract Experiments have been conducted in which CO2gases with varying C and O isotopic compositions and with stochastic and nonstochastic Δ47values have been allowed to equilibrate with phosphoric acid of two concentrations in reaction vessels of varying dimensions at temperatures of 25 and 90 °C. Rates of13C18O and18O exchange between the CO2and the phosphoric acid varied as a function of the length of exposure, volume of reaction vessel, acid strength, and difference of the initial Δ47and δ18O values of the CO2from theoretical equilibrium values. The Δ47values were also altered by heated stainless steel surfaces such as those found within the Kiel device and other preparation systems. These results have been used to explain variations in the differences in the fractionation between 25 and 90 °C reported for calcite by different workers as well as differences in the slopes between temperature and Δ47values produced by reacting samples at different temperatures (25 and 90 °C).more » « less
-
Abstract Stable hydrogen and oxygen isotopic compositions (δ2H and δ18O, respectively) of animal tissues have been used to infer geographical origin or mobility based on the premise that the isotopic composition of tissue is systematically related to that of local water sources. Isotopic data for known‐origin samples are required to quantify these tissue–environment relationships. Although many of such data have been published and could be reused by researchers, differences in the standards used for calibration and analytical procedures for different datasets limit the comparability of these data.We develop an algorithm that uses results from comparative analysis of secondary standards to transform data among reference scales and estimate the uncertainty inherent in these transformations. We apply the algorithm to a compilation of known‐origin keratin data published over the past ~20 years.We show that transformation improves the comparability of data from different laboratories, and that the transformed data suggest ecophysiologically meaningful differences in keratin–water relationships among different animal groups and taxa.The compiled data and algorithms are freely available in the ASSIGNRr‐package to support geographical provenance research, and more generally offer a methodology overcoming several challenges in geochemical data integration and reuse.more » « less
An official website of the United States government
