skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quill: A Declarative Approach for Accelerating Augmented Reality Application Development
Data we encounter in the real-world such as printed menus, business documents, and nutrition labels, are often ad-hoc. Valuable insights can be gathered from this data when combined with additional information. Recent advances in computer vision and augmented reality have made it possible to understand and enrich such data. Joining real-world data with remote data stores and surfacing those enhanced results in place, within an augmented reality interface can lead to better and more informed decision-making capabilities. However, building end-user applications that perform these joins with minimal human effort is not straightforward. It requires a diverse set of expertise, including machine learning, database systems, computer vision, and data visualization. To address this complexity, we present Quill – a framework to develop end-to-end applications that model augmented reality applications as a join between real- world data and remote data stores. Using an intuitive domain-specific language, Quill accelerates the development of end-user applications that join real-world data with remote data stores. Through experiments on applications from multiple different domains, we show that Quill not only expedites the process of development, but also allows developers to build applications that are more performant than those built using standard developer tools, thanks to the ability to optimize declarative specifications. We also perform a user-focused study to investigate how easy (or difficult) it is to use Quill for developing augmented reality applications than other existing tools. Our results show that Quill allows developers to build and deploy applications with a lower technical background than building the same application using existing developer tools.  more » « less
Award ID(s):
1910356
PAR ID:
10377784
Author(s) / Creator(s):
Editor(s):
Sudeepa Roy and Jun Yang
Date Published:
Journal Name:
A Quarterly bulletin of the Computer Society of the IEEE Technical Committee on Data Engineering
Volume:
45
Issue:
3
ISSN:
1053-1238
Page Range / eLocation ID:
81-100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localization 
    more » « less
  2. Augmented Reality (AR) enables elements of a computer-generated digital world to be integrated with a user’s perception of the physical world. Smart glasses, like smart phones, have independent operating systems and they can support a variety of different applications and modes of communication to support augmented reality. This paper details the development of a novel new application that extends a widely-used mobile app for phenotyping and allows agronomists to interact with the app while keeping their hands free to perform field work. The smart glasses accept voice commands from the user and communicate with the mobile phone app via Bluetooth. In addition, changes detected by the mobile phone are displayed to the user on the smart glasses. This enables agronomists to efficiently collect phenotypic data. 
    more » « less
  3. Dennison, Mark S.; Krum, David M.; Sanders-Reed, John; Arthur, Jarvis (Ed.)
    This paper presents research on the use of penetrating radar combined with 3-D computer vision for real-time augmented reality enabled target sensing. Small scale radar systems face the issue that positioning systems are inaccurate, non-portable or challenged by poor GPS signals. The addition of modern computer vision to current cutting-edge penetrating radar technology expands the common 2-D imaging plane to 6 degrees of freedom. Applying the fact that the radar scan itself is a vector with length equivalent to depth from the transmitting and receiving antennae, these technologies used in conjunction can generate an accurate 3-D model of the internal structure of any material for which radar can penetrate. The same computer vision device that localizes the radar data can also be used as the basis for an augmented reality system. Augmented reality radar technology has applications in threat detection (human through-wall, IED, landmine) as well as civil (wall and door structure, buried item detection). For this project, the goal is to create a data registration pipeline and display the radar scan data visually in a 3-D environment using localization from a computer vision tracking device. Processed radar traces are overlayed in real time to an augmented reality screen where the user can view the radar signal intensity to identify and classify targets. 
    more » « less
  4. Instance retrieval systems are widely used in applications such as robot navigation, medical diagnosis, and augmented reality. Blippar is a company that creates compelling augmented reality experiences or provides you with the tools to build your own. In this paper we focus on one of the company's augmented-reality applications, with which users are able to point their phone cameras at different objects in order to receive information about the objects in real time. In this paper, we provide what we believe to be the first study of forward index compression techniques for such instance retrieval systems. First, we perform an analysis of real-world data from a large-scale commercial instance retrieval system, run by Blippar focusing on augmented reality. Then we propose an entropy-based lossless compression strategy. Experiments show that our proposed Huffman-based approach outperforms a variety of other compression techniques, while also increasing overall system efficiency slightly. 
    more » « less
  5. null (Ed.)
    Amazon's voice-based assistant, Alexa, enables users to directly interact with various web services through natural language dialogues. It provides developers with the option to create third-party applications (known as Skills) to run on top of Alexa. While such applications ease users' interaction with smart devices and bolster a number of additional services, they also raise security and privacy concerns due to the personal setting they operate in. This paper aims to perform a systematic analysis of the Alexa skill ecosystem. We perform the first large-scale analysis of Alexa skills, obtained from seven different skill stores totaling to 90,194 unique skills. Our analysis reveals several limitations that exist in the current skill vetting process. We show that not only can a malicious user publish a skill under any arbitrary developer/company name, but she can also make backend code changes after approval to coax users into revealing unwanted information. We, next, formalize the different skill-squatting techniques and evaluate the efficacy of such techniques. We find that while certain approaches are more favorable than others, there is no substantial abuse of skill squatting in the real world. Lastly, we study the prevalence of privacy policies across different categories of skill, and more importantly the policy content of skills that use the Alexa permission model to access sensitive user data. We find that around 23.3% of such skills do not fully disclose the data types associated with the permissions requested. We conclude by providing some suggestions for strengthening the overall ecosystem, and thereby enhance transparency for end-users. 
    more » « less