skip to main content


Title: Procrastinated Tree Search: Black-Box Optimization with Delayed, Noisy, and Multi-Fidelity Feedback
In black-box optimization problems, we aim to maximize an unknown objective function, where the function is only accessible through feedbacks of an evaluation or simulation oracle. In real-life, the feedbacks of such oracles are often noisy and available after some unknown delay that may depend on the computation time of the oracle. Additionally, if the exact evaluations are expensive but coarse approximations are available at a lower cost, the feedbacks can have multi-fidelity. In order to address this problem, we propose a generic extension of hierarchical optimistic tree search (HOO), called ProCrastinated Tree Search (PCTS), that flexibly accommodates a delay and noise-tolerant bandit algorithm. We provide a generic proof technique to quantify regret of PCTS under delayed, noisy, and multi-fidelity feedbacks. Specifically, we derive regret bounds of PCTS enabled with delayed-UCB1 (DUCB1) and delayed-UCB-V (DUCBV) algorithms. Given a horizon T, PCTS retains the regret bound of non-delayed HOO for expected delay of O(log T), and worsens by T^((1-α)/(d+2)) for expected delays of O(T^(1-α)) for α ∈ (0,1]. We experimentally validate on multiple synthetic functions and hyperparameter tuning problems that PCTS outperforms the state-of-the-art black-box optimization methods for feedbacks with different noise levels, delays, and fidelity.  more » « less
Award ID(s):
1910830
NSF-PAR ID:
10377797
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
9
ISSN:
2159-5399
Page Range / eLocation ID:
10381 to 10390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Regret minimization has proved to be a versatile tool for tree- form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, mod- ern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the player’s decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs—even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restric- tions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used—for example, those in which only black-box access to the environment is available. We give the first, to our knowl- edge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i)—and thus also (ii)—is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encoun- ters new decision points. We give an efficient algorithm that achieves O(T 3/4) regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algo- rithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment. 
    more » « less
  2. This paper studies distributed submodular optimization subject to partition matroid. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. The agents are communicating over a connected undirected graph and have access only to their own strategy set. As known in the literature, submodular maximization subject to matroid constraints is NP-hard. Hence, our objective is to propose a polynomial-time distributed algorithm to obtain a suboptimal solution with guarantees on the optimality bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme built on the multilinear-extension of the submodular set function. We use a maximum consensus protocol to minimize the inconsistency of the shared information over the network caused by delay in the flow of information while solving for the fractional solution of the multilinear extension model. Furthermore, we propose a distributed framework of finding a set solution using the fractional solution. We show that our distributed algorithm results in a strategy set that when the team objective function is evaluated at worst case the objective function value is in 1−1/e−O(1/T) of the optimal solution in the value oracle model where T is the number of communication instances of the agents. An example demonstrates our results. 
    more » « less
  3. null (Ed.)
    Monte-Carlo planning, as exemplified by Monte-Carlo Tree Search (MCTS), has demonstrated remarkable performance in applications with finite spaces. In this paper, we consider Monte-Carlo planning in an environment with continuous state-action spaces, a much less understood problem with important applications in control and robotics. We introduce POLY-HOOT , an algorithm that augments MCTS with a continuous armed bandit strategy named Hierarchical Optimistic Optimization (HOO) (Bubeck et al., 2011). Specifically, we enhance HOO by using an appropriate polynomial, rather than logarithmic, bonus term in the upper confidence bounds. Such a polynomial bonus is motivated by its empirical successes in AlphaGo Zero (Silver et al., 2017b), as well as its significant role in achieving theoretical guarantees of finite space MCTS (Shah et al., 2019). We investigate, for the first time, the regret of the enhanced HOO algorithm in non-stationary bandit problems. Using this result as a building block, we establish non-asymptotic convergence guarantees for POLY-HOOT : the value estimate converges to an arbitrarily small neighborhood of the optimal value function at a polynomial rate. We further provide experimental results that corroborate our theoretical findings. 
    more » « less
  4. We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problems with only noisy objective function evaluations. Toward this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of nonlinearity of the manifold constraint and issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and nonsmooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of ϵ-stationary point or ϵ-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks. 
    more » « less
  5. null (Ed.)
    Often—for example in war games, strategy video games, and financial simulations—the game is given to us only as a black-box simulator in which we can play it. In these settings, since the game may have unknown nature action distributions (from which we can only obtain samples) and/or be too large to expand fully, it can be difficult to compute strategies with guarantees on exploitability. Recent work (Zhang and Sandholm 2020) resulted in a notion of certificate for extensive-form games that allows exploitability guarantees while not expanding the full game tree. However, that work assumed that the black box could sample or expand arbitrary nodes of the game tree at any time, and that a series of exact game solves (via, for example, linear programming) can be conducted to compute the certificate. Each of those two assumptions severely restricts the practical applicability of that method. In this work, we relax both of the assumptions. We show that high-probability certificates can be obtained with a black box that can do nothing more than play through games, using only a regret minimizer as a subroutine. As a bonus, we obtain an equilibrium-finding algorithm with ~O (1= p T) convergence rate in the extensive-form game setting that does not rely on a sampling strategy with lower-bounded reach probabilities (which MCCFR assumes). We demonstrate experimentally that, in the black-box setting, our methods are able to provide nontrivial exploitability guarantees while expanding only a small fraction of the game tree. 
    more » « less