Alternative splicing extends the coding potential of genomes by creating multiple isoforms from one gene. Isoforms can render transcript specificity and diversity to initiate multiple responses required during transcriptome adjustments in stressed environments. Although the prevalence of alternative splicing is widely recognized, how diverse isoforms facilitate stress adaptation in plants that thrive in extreme environments are unexplored. Here we examine how an extremophyte model, Schrenkiella parvula, coordinates alternative splicing in response to high salinity compared to a salt-stress sensitive model, Arabidopsis thaliana. We use Iso-Seq to generate full length reference transcripts and RNA-seq to quantify differential isoform usage in response to salinity changes. We find that single-copy orthologs where S. parvula has a higher number of isoforms than A. thaliana as well as S. parvula genes observed and predicted using machine learning to have multiple isoforms are enriched in stress associated functions. Genes that showed differential isoform usage were largely mutually exclusive from genes that were differentially expressed in response to salt. S. parvula transcriptomes maintained specificity in isoform usage assessed via a measure of expression disorderdness during transcriptome reprogramming under salt. Our study adds a novel resource and insight to study plant stress tolerance evolved in extreme environments.
more »
« less
Spatiotemporal gene expression atlas of the extremophyte Schrenkiella parvula
Extremophytes are naturally selected to survive environmental stresses, but scarcity of genetic resources for them developed with spatiotemporal resolution limit their use in stress biology. Schrenkiella parvula is one of the leading extremophyte models with initial molecular genomic resources developed to study its tolerance mechanisms to high salinity. Here we present a transcriptome atlas for S. parvula with subsequent analyses to highlight its diverse gene expression networks associated with salt responses. We included spatiotemporal expression profiles, expression specificity of each gene, and co-expression and functional gene networks representing 115 transcriptomes sequenced from 35 tissue and developmental stages examining their responses before and after 27 salt treatments in our current study. The highest number of tissue-preferentially expressed genes were found in seeds and siliques while genes in seedlings showed the broadest expression profiles among developmental stages. Seedlings had the highest magnitude of overall transcriptomic responses to salinity compared to mature tissues and developmental stages. Differentially expressed genes in response to salt were largely mutually exclusive but shared common stress response pathways spanning across tissues and developmental stages. Our foundational dataset created for S. parvula representing a stress-adapted wild plant lays the groundwork for future functional, comparative, and evolutionary studies using extremophytes aiming to uncover novel stress tolerant mechanisms.
more »
« less
- PAR ID:
- 10377813
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress‐adapted lifestyle are unknown along with trade‐offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress‐resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root‐shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt‐induced early flowering, resulting in viable seeds. Self‐fertilization in salt‐induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle ofS. parvula.more » « less
-
Living with high potassium: Balance between nutrient acquisition and K-induced salt stress signalingAbstract High potassium (K) in the growth medium induces salinity stress in plants. However, the molecular mechanisms underlying plant responses to K-induced salt stress are virtually unknown. We examined Arabidopsis (Arabidopsis thaliana) and its extremophyte relative Schrenkiella parvula using a comparative multiomics approach to identify cellular processes affected by excess K and understand which deterministic regulatory pathways are active to avoid tissue damages while sustaining growth. Arabidopsis showed limited capacity to curb excess K accumulation and prevent nutrient depletion, contrasting to S. parvula which could limit excess K accumulation without restricting nutrient uptake. A targeted transcriptomic response in S. parvula promoted nitrogen uptake along with other key nutrients followed by uninterrupted N assimilation into primary metabolites during excess K-stress. This resulted in larger antioxidant and osmolyte pools and corresponded with sustained growth in S. parvula. Antithetically, Arabidopsis showed increased reactive oxygen species levels, reduced photosynthesis, and transcriptional responses indicative of a poor balance between stress signaling, subsequently leading to growth limitations. Our results indicate that the ability to regulate independent nutrient uptake and a coordinated transcriptomic response to avoid nonspecific stress signaling are two main deterministic steps toward building stress resilience to excess K+-induced salt stress.more » « less
-
Abstract Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data.more » « less
-
Cyclophilin A/DIAGEOTROPICA (DGT) has been linked to auxin-regulated development in tomato and appears to affect multiple developmental pathways. Loss of DGT function results in a pleiotropic phenotype that is strongest in the roots, including shortened roots with no lateral branching. Here, we present an RNA-Seq dataset comparing the gene expression profiles of wildtype (‘Ailsa Craig’) anddgttissues from three spatially separated developmental stages of the tomato root tip, with three replicates for each tissue and genotype. We also identify differentially expressed genes, provide an initial comparison of genes affected in each genotype and tissue, and provide the pipeline used to analyze the data. Further analysis of this dataset can be used to gain insight into the effects of DGT on various root developmental pathways in tomato.more » « less
An official website of the United States government

