skip to main content


Title: Machine Learning Gravity Wave Parameterization Generalizes to Capture the QBO and Response to Increased CO 2
Abstract

We present single‐column gravity wave parameterizations (GWPs) that use machine learning to emulate non‐orographic gravity wave (GW) drag and demonstrate their ability to generalize out‐of‐sample. A set of artificial neural networks (ANNs) are trained to emulate the momentum forcing from a conventional GWP in an idealized climate model, given only one view of the annual cycle and one phase of the Quasi‐Biennial Oscillation (QBO). We investigate the sensitivity of offline and online performance to the choice of input variables and complexity of the ANN. When coupled with the model, moderately complex ANNs accurately generate full cycles of the QBO. When the model is forced with enhanced CO2, its climate response with the ANN matches that generated with the physics‐based GWP. That ANNs can accurately emulate an existing scheme and generalize to new regimes given limited data suggests the potential for developing GWPs from observational estimates of GW momentum transport.

 
more » « less
Award ID(s):
2004572 2004492
NSF-PAR ID:
10446257
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The drag due to breaking atmospheric gravity waves plays a leading order role in driving the middle atmosphere circulation, but as their horizontal wavelength range from tens to thousands of kilometers, part of their spectrum must be parameterized in climate models. Gravity wave parameterizations prescribe a source spectrum of waves in the lower atmosphere and allow these to propagate upwards until they either dissipate or break, where they deposit drag on the large‐scale flow. These parameterizations are a source of uncertainty in climate modeling which is generally not quantified. Here, we explore the uncertainty associated with a non‐orographic gravity wave parameterization given an assumed parameterization structure within a global climate model of intermediate complexity, using the Calibrate, Emulate and Sample (CES) method. We first calibrate the uncertain parameters that define the gravity wave source spectrum in the tropics, to obtain climate model settings that are consistent with properties of the primary mode of tropical stratospheric variability, the Quasi‐Biennial Oscillation (QBO). Then we use a Gaussian process emulator to sample the calibrated distribution of parameters and quantify the uncertainty of these parameter choices. We find that the resulting parametric uncertainties on the QBO period and amplitude are of a similar magnitude to the internal variability under a 2xCO2forcing.

     
    more » « less
  2. Abstract

    An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi‐biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale‐selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid‐stratosphere when the half‐width exceedsm/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave‐driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.

     
    more » « less
  3. Abstract

    We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2simulations. In the quadrupled CO2simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.

     
    more » « less
  4. Abstract

    Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the un‐resolved and under‐resolved GWs have to be represented using a sub‐grid scale (SGS) parameterization in general circulation models (GCMs). In recent years, machine learning (ML) techniques have emerged as novel methods for SGS modeling of climate processes. In the widely used approach of supervised (offline) learning, the true representation of the SGS terms have to be properly extracted from high‐fidelity data (e.g., GW‐resolving simulations). However, this is a non‐trivial task, and the quality of the ML‐based parameterization significantly hinges on the quality of these SGS terms. Here, we compare three methods to extract 3D GW fluxes and the resulting drag (Gravity Wave Drag [GWD]) from high‐resolution simulations: Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and the full SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we also quantify the SGS GWD due to lateral momentum fluxes. We build and utilize a library of tropical high‐resolution (Δx = 3 km) simulations using weather research and forecasting model. Results show that the SGS lateral momentum fluxes could have a significant contribution to the total GWD. Moreover, when estimating GWD due to lateral effects, interactions between the SGS and the resolved large‐scale flow need to be considered. The sensitivity of the results to different filter type and length scale (dependent on GCM resolution) is also explored to inform the scale‐awareness in the development of data‐driven parameterizations.

     
    more » « less
  5. Abstract

    In this study, the mechanism driving the narrow lower‐thermospheric winter‐to‐summer meridional circulation is thoroughly investigated for the first time using the Specified Dynamics configuration runs of the Whole Atmosphere Community Climate Model eXtended (SD‐WACCMX) simulations and the TIMED Doppler Interferometer (TIDI) observations. The mean meridional circulation in the SD‐WACCMX is qualitatively consistent with the TIDI measurements, though the magnitude in the SD‐WACCMX is about 50% weaker. The lower‐thermospheric winter‐to‐summer circulation is mainly driven by the resolved wave forcing, including the tides and internally generated inertia gravity waves (GWs). The momentum forcing from the parameterized sub‐grid scale GWs is not as significant as the resolved wave forcing in driving the lower‐thermospheric meridional circulation. The GW parameterization scheme in the SD‐WACCMX only includes GWs with phase velocities in the range of ±45 m/s, which might result in most of the parameterized sub‐grid GWs dissipating and breaking in the mesosphere and hardly impacting the lower thermosphere. Only including slow GWs in the SD‐WACCMX parameterization could potentially lead to the underestimation of the meridional wind in the model. Analysis also indicates the lower‐thermospheric meridional circulation is stronger in the summer hemisphere, which is attributed to the hemispheric asymmetry in the resolved wave momentum forcing. This study underlines the importance of the whole atmosphere coupling through wave propagation and dissipation. This understanding can guide the model development with an accurate representation of underlying physical processes in the mesosphere and lower thermosphere which drives the lower‐thermospheric circulation as well as the overall dynamics of this region.

     
    more » « less