We report on spectroscopic measurements on the
This content will become publicly available on October 20, 2023
- Award ID(s):
- 1709285
- NSF-PAR ID:
- 10377985
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 126
- Issue:
- 41
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 8338 to 8349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. -
-
Abstract Structural details of the crust play an important role in controlling the distribution of volcanic activity in arc systems. In southwest Washington, several different regional structures associated with accretion and magmatism have been invoked to explain the broad distribution of Cascade volcanism in this region. In order to image these regional structures in the upper crust, Pg and Sg travel times from the imaging Magma Under St. Helens (iMUSH) active‐source seismic experiment are inverted for
V p ,V s , andV p /V s models in the region surrounding Mount St. Helens. Several features of these models provide new insights into the regional structure of the upper crust. A large section of the Southern Washington Cascades Conductor is imaged as a lowV p /V s anomaly that is inferred to represent a broad sedimentary/metasedimentary sequence that composes the upper crust in this region. The accreted terrane Siletzia is imaged west of Mount St. Helens as north/south trending highV p andV p /V s bodies. TheV p /V s model shows relatively highV p /V s regions near Mount St. Helens and the Indian Heaven Volcanic Field, which could be related to the presence of magmatic fluids. Separating these two volcanic regions below 6‐km depth is a northeast trending series of highV p andV s bodies. These bodies have the same orientation as several volcanic/magmatic features at the surface, including Mount St. Helens and Mount Rainier, and it is argued that these high‐velocity features are a regional‐scale group of intrusive bodies associated with a crustal weak zone that focuses magma ascent.