skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Global Ocean Biogeochemistry (GO-BGC) Array of Profiling Floats to Observe Changing Ocean Chemistry and Biology
Abstract The Global Ocean Biogeochemistry (GO-BGC) Array is a project funded by the US National Science Foundation to build a global network of chemical and biological sensors on Argo profiling floats. The network will monitor biogeochemical cycles and ocean health. The floats will collect from a depth of 2,000 meters to the surface, augmenting the existing Argo array that monitors ocean temperature and salinity. Data will be made freely available within a day of being collected via the Argo data system. These data will allow scientists to pursue fundamental questions concerning ocean ecosystems, monitor ocean health and productivity, and observe the elemental cycles of carbon, oxygen, and nitrogen through all seasons of the year. Such essential data are needed to improve computer models of ocean fisheries and climate, to monitor and forecast the effects of ocean warming and ocean acidification on sea life, and to address key questions identified in “Sea Change: 2015‐2025 Decadal Survey of Ocean Sciences” such as: What is the ocean's role in regulating the carbon cycle? What are the natural and anthropogenic drivers of open ocean deoxygenation? What are the consequences of ocean acidification? How do physical changes in mixing and circulation affect nutrient availability and ocean productivity?  more » « less
Award ID(s):
1946578 2110258
PAR ID:
10378035
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Marine Technology Society Journal
Volume:
56
Issue:
3
ISSN:
0025-3324
Page Range / eLocation ID:
122 to 123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the 1990s, scientists have deployed thousands of robotic floats equipped with temperature and salinity sensors in the ocean as part of an international effort called the Argo program. These floats have already collected more ocean profiles than all scientific cruises combined. They reveal how ocean temperature and circulation patterns have changed over the years and shed light on the extent that these changes have been caused by humans. But to monitor the impact of climate change on the marine ecosystem—from productivity to fisheries to ocean acidification—scientists need a greater variety of chemical measurements. To that end, research groups around the world have worked in collaboration to develop additional sensors to include on the bodies of Argo floats, turning them into automated biogeochemical floats. 
    more » « less
  2. Abstract OneArgo is a major expansion of the Argo program, which has provided two decades of transformative physical data for the upper 2 km of the global ocean. The present Argo array will be expanded in three ways: (1) Global Core: the existing upper ocean measurements will be extended to high latitudes and marginal seas and with enhanced coverage in the tropics and western boundaries of the major ocean basins; (2) Deep: deep ocean measurements will be obtained for the 50% of the global oceans that are below 2,000-m depth; and (3) Biogeochemical: dissolved oxygen, pH, nitrate, chlorophyll, optical backscatter, and irradiance data will be collected to investigate biogeochemical variability of the upper ocean and the processes by which these cycles respond to a changing climate. The technology and infrastructure necessary for this expansion is now being developed through large-scale regional pilots to further refine the floats and sensors and to demonstrate the utility of these measurements. Further innovation is expected to improve the performance of the floats and sensors and to develop the analyses necessary to provide research-quality data. A fully global OneArgo should be operational within 5‐10 years. 
    more » « less
  3. Abstract The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 m of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2° × 2° spatial resolution with a 90-day time step. We then use the transition matrix to predict the probability of future float locations of the core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos system and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE). 
    more » « less
  4. Abstract Simulations of the Argentine Basin have large uncertainties associated with quantities such as air‐sea exchanges of heat and carbon in current generation climate models and ocean reanalysis products. This is due to the complex topography, profound undersampling until recent years, and strong currents and mixing of subpolar and subtropical water masses in the basin. Because mixing of water masses is important here, model resolution is hypothesized to play an important role in estimating ocean quantities and determining overall budgets. We construct three regional ocean models with biogeochemistry at 1/3°, 1/6°, and 1/12° resolutions for the year 2017 to investigate heat and carbon dynamics in the region and determine the effect of model resolution on these dynamics. Initial conditions and boundary forcing from BSOSE (the Biogeochemical Southern Ocean State Estimate (Verdy & Mazloff, 2017),https://doi.org/10.1002/2016JC012650) and atmospheric forcing from ERA5 are used. The models are evaluated for accuracy by comparing output to Argo and BGC‐Argo float profiles, BSOSE, and other reanalyses and mapped products. We then quantify the effect of resolution on model upper ocean heat and carbon transport and the associated air‐sea exchanges. We determine that increasing the resolution from 1/3° to 1/12° enhances the upward vertical transport and surface exchanges of heat but causes no significant effect on surface carbon fluxes despite enhancing downward transport of anomalous DIC. 
    more » « less
  5. Abstract The core Argo array has operated with the design goal of uniform spatial distribution of 3° in latitude and longitude. Recent studies have acknowledged that spatial and temporal scales of variability in some parts of the ocean are not resolved by 3° sampling and have recommended increased core Argo density in the equatorial region, boundary currents, and marginal seas with an integrated vision of other Argo variants. Biogeochemical (BGC) Argo floats currently observe the ocean from a collection of pilot arrays, but recently funded proposals will transition these pilot arrays to a global array. The current BGC Argo implementation plan recommends uniform spatial distribution of BGC Argo floats. For the first time, we estimate the effectiveness of the existing BGC Argo array to resolve the anomaly from the mean using a subset of modeled, full-depth BGC fields. We also study the effectiveness of uniformly distributed BGC Argo arrays with varying float densities at observing the ocean. Then, using previous Argo trajectories, we estimate the Argo array’s future distribution and quantify how well it observes the ocean. Finally, using a novel technique for sequentially identifying the best deployment locations, we suggest the optimal array distribution for BGC Argo floats to minimize objective mapping uncertainty in a subset of BGC fields and to best constrain BGC temporal variability. 
    more » « less