skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elementary Computational Thinking Instruction and Assessment: A Learning Trajectory Perspective
There is little empirical research related to how elementary students develop computational thinking (CT) and how they apply CT in problem-solving. To address this gap in knowledge, this study made use of learning trajectories (LTs; hypothesized learning goals, progressions, and activities) in CT concept areas such as sequence, repetition, conditionals, and decomposition to better understand students’ CT. This study implemented eight math-CT integrated lessons aligned to U.S. national mathematics education standards and the LTs with third- and fourth-grade students. This basic interpretive qualitative study aimed at gaining a deeper understanding of elementary students’ CT by having students express and articulate their CT in cognitive interviews. Participants’ ( n = 22) CT articulation was examined using a priori codes translated verbatim from the learning goals in the LTs and was mapped to the learning goals in the LTs. Results revealed a range of students’ CT in problem-solving, such as using precise and complete problem-solving instructions, recognizing repeating patterns, and decomposing arithmetic problems. By collecting empirical data on how students expressed and articulated their CT, this study makes theoretical contributions by generating initial empirical evidence to support the hypothesized learning goals and progressions in the LTs. This article also discusses the implications for integrated CT instruction and assessments at the elementary level.  more » « less
Award ID(s):
1932920
PAR ID:
10378170
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Computing Education
Volume:
22
Issue:
2
ISSN:
1946-6226
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital storytelling in combination with makerspace activities holds significant potential to engage students and support their learning. When students play, such as through makerspace activities, they engage in critical thinking and problem solving. In our work, we are joining storytelling with computational thinking (CT) practices, physical science exploration, and makerspace activities through a digital narrative-centered learning environment for elementary school. Learning within the environment is undergirded by makerspace play that centers on finding solutions to an open problem—how can stranded scientists on a remote island power up their village using found materials? The learning environment supports students’ CT practices and science content learning as they use and problem solve with physical energy conversion kits, culminating in their creation of an interactive story. We present here a brief case study of the ways students’ experiences with makerspace play support their problem solving and storytelling. 
    more » « less
  2. For K-8 computer science (CS) education to continue to expand, it is essential that we understand how students develop and demonstrate computational thinking (CT). One approach to gaining this insight is by having students articulate their understanding of CT through cognitive interviews. This study presents findings of a cognitive interview study with 13 fourth-grade students (who had previously engaged in integrated CT and mathematics instruction) working on CT assessment items. The items assessed four CT concepts: sequence, repetition, conditionals, and decomposition. This study analyzed students' articulated understanding of the four CT concepts and the correspondence between that understanding and hypothesized learning trajectories (LTs). We found that 1) all students articulated an understanding of sequence that matched the intermediate level of the Sequence LT; 2) a majority of students' responses demonstrated the level of understanding that the repetition and decomposition items were designed to solicit (8 of 9 responses were correct for repetition and 4 of 6 were correct for decomposition); and 3) less than half of students' responses articulated an understanding of conditionals that was intended by the items (4 of 9 responses were correct). The results also suggested questioning the directional relationships of two statements in the existing Conditionals LT. For example, unlike the LT, this study revealed that students could understand "A conditional connects a condition to an outcome'' before "A condition is something that can be true or false.'' 
    more » « less
  3. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  4. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  5. Yin, Shi (Ed.)
    Computational thinking (CT) is an essential problem-solving skill that students need to successfully live and work with developing technologies. There is an increasing call in the literature by researchers and policy leaders to integrate CT at the elementary level into core subjects to provide early and equitable access for all students. While some critics may claim the concepts and skills of CT are developmentally advanced for elementary age students, subjects such as science can provide real-world and relevant problems to which foundational CT components can be applied. By assessing how CT concepts and approaches integrate authentically into current science lessons, policymakers, and district leaders can be more intentional in supporting implementation efforts. This research used an exploratory survey design to examine the frequencies of CT concepts (decomposition, algorithms, abstraction, and pattern recognition) and approaches (tinkering, creating, debugging, perseverance, and collaboration) that exist in science in K–5 schools in a northeast state in the United States as reported by elementary science teachers (n = 259). Hierarchical linear modeling was used to analyze the influence of teacher and district factors on the amount of time CT concepts and approaches were integrated in the science lessons. Experience, grade level, confidence, and participation in a research–practice partnership were found to be significant predictors of CT. This study contributes to a better understanding of variables affecting CT teaching frequency that can be leveraged to impact reform efforts supporting CT integration in science. 
    more » « less