skip to main content


Title: The influence of genetic architecture on responses to selection under drought in rice
Abstract

Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross‐environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross‐environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade‐off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress‐resistant crops.

 
more » « less
NSF-PAR ID:
10378199
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
15
Issue:
10
ISSN:
1752-4571
Format(s):
Medium: X Size: p. 1670-1690
Size(s):
p. 1670-1690
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci. 
    more » « less
  2. Abstract

    Flowering time and water‐use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time,WUE, andWUEplasticity to drought inArabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) IsWUEplasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions ofA. thalianagrown in well‐watered and season‐ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment.WUEand flowering time were consistently positively genetically correlated.WUEwas correlated withWUEplasticity, but the direction changed between treatments. Selection generally favored early flowering and lowWUE, with drought favoring earlier flowering significantly more than well‐watered conditions. Selection for lowerWUEwas marginally stronger under drought. There were no net fitness costs ofWUEplasticity.WUEplasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation betweenWUEand flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions ofA. thaliana.WUEplasticity may be favored over completely fixed development in environments with periodic drought.

     
    more » « less
  3. Premise

    Whether drought‐adaptation mechanisms tend to evolve together, evolve independently, or evolve constrained by genetic architecture is incompletely resolved, particularly for water‐relations traits besides gas exchange. We addressed this issue in two subspecies ofClarkia xantiana(Onagraceae), California winter annuals that separated approximately 65,000 years ago and are adapted, partly by differences in flowering time, to native ranges differing in precipitation.

    Methods

    In these subspecies and in recombinant inbred lines (RILs) from a cross between them, we scored traits related to drought adaptation (timing of seed germination and of flowering, succulence, pressure–volume curve variables) in common environments.

    Results

    The subspecies native to more arid environments (parviflora) exhibited slower seed germination in saturated conditions, earlier flowering, and greater succulence, likely indicating superior drought avoidance, drought escape, and dehydration resistance via water storage. The other subspecies (xantiana) had lower osmotic potential at full turgor and lower water potential at turgor loss, implying superior dehydration tolerance. Genetic correlations among RILs suggest facilitated evolution of some trait combinations and independence of others. Where genetic correlations exist, subspecies differences fell along them, with the exception of differences in succulence and turgor loss point. In that case, subspecies difference overcame genetic correlations, possibly reflecting strong selection and/or antagonistic genetic correlations with other traits.

    Conclusions

    Clarkia xantianasubspecies’ differ in multiple mechanisms of drought adaptation. Genetic architecture generally does not seem to have constrained the evolution of these mechanisms, and it may have facilitated the evolution of some of trait combinations.

     
    more » « less
  4. Summary

    Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits.Arabidopsis thalianaflowering‐time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering‐time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.

     
    more » « less
  5. Abstract Premise Annual plants often exhibit drought‐escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. Methods We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal‐drought induced responses in drought resistance traits. Results Populations varied considerably in drought‐escape‐ and drought‐avoidance‐associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water‐use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. Conclusions Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable. 
    more » « less