skip to main content

Title: Ionizing feedback effects on star formation in globular clusters with multiple stellar populations

Using 3D radiation-hydrodynamical simulations, we study the effects of ionizing radiation on the formation of second-generation (SG) stars in globular clusters (GCs) with multiple stellar populations. In particular, we focus on massive ($10^7 \, \mathrm{M}_{\odot }$) and young (40-Myr old) GCs. We consider stellar winds from asymptotic giant branch (AGB) stars, ram pressure, gas accretion on to the cluster, and photo-ionization feedback of binary stars. We find that the stellar luminosity is strong enough to warm and ionize the intracluster medium, but it does not lead to a significant gas expulsion. The cluster can thus retain the ejecta of AGB stars and the accreted pristine gas. In addition, efficient cooling occurs in the central region of the cluster within $50\, \mathrm{Myr}$ from the formation of first generation stars, leading to the formation of SG stars. Our results indicate that the inclusion of photo-ionization does not suppress SG formation, but rather delays it by about $\sim 10\, \mathrm{Myr}$. The time delay depends on the density of the pristine gas, so that a denser medium exhibits a shorter delay in star formation. Moreover, photo-ionization leads to a modest decrease in the total SG mass, compared to a model without it.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4175-4186
["p. 4175-4186"]
Sponsoring Org:
National Science Foundation
More Like this

    By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10−24 g cm−3) external gas density, a disc of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density ($10^{-23}\, {\rm g\ cm^{-3}}$), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs.

    more » « less
  2. null (Ed.)
    ABSTRACT By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second-generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the ‘delay time’. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of ∼0.14 dex, consistent with the spread found in about $20{{\ \rm per\ cent}}$ of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs. 
    more » « less
  3. ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies. 
    more » « less
  4. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less

    We analyse the first giant molecular cloud (GMC) simulation to follow the formation of individual stars and their feedback from jets, radiation, winds, and supernovae, using the STARFORGE framework in the GIZMO code. We evolve the GMC for $\sim 9 \rm Myr$, from initial turbulent collapse to dispersal by feedback. Protostellar jets dominate feedback momentum initially, but radiation and winds cause cloud disruption at $\sim 8{{\ \rm per\ cent}}$ star formation efficiency (SFE), and the first supernova at $8.3\, \rm Myr$ comes too late to influence star formation significantly. The per-free-fall SFE is dynamic, accelerating from 0 per cent to $\sim 18{{\ \rm per\ cent}}$ before dropping quickly to <1 per cent, but the estimate from YSO counts compresses it to a narrower range. The primary cluster forms hierarchically and condenses to a brief ($\sim 1\, \mathrm{Myr}$) compact ($\sim 1\, \rm pc$) phase, but does not virialize before the cloud disperses, and the stars end as an unbound expanding association. The initial mass function resembles the Chabrier (2005) form with a high-mass slope α = −2 and a maximum mass of 55 M⊙. Stellar accretion takes $\sim 400\, \rm kyr$ on average, but $\gtrsim 1\,\rm Myr$ for >10 M⊙ stars, so massive stars finish growing latest. The fraction of stars in multiples increase as a function of primary mass, as observed. Overall, the simulation much more closely resembles reality, compared to previous versions that neglected different feedback physics entirely. But more detailed comparison with synthetic observations will be needed to constrain the theoretical uncertainties.

    more » « less