Type Ia supernovae (SNe Ia) play a crucial role as standardizable candles in measurements of the Hubble constant and dark energy. Increasing evidence points towards multiple possible explosion channels as the origin of normal SNe Ia, with possible systematic effects on the determination of cosmological parameters. We present, for the first time, a comprehensive comparison of publicly available SN Ia model nucleosynthetic data with observations of late-time light curve observations of SN Ia events. These models span a wide range of white dwarf (WD) progenitor masses, metallicities, explosion channels, and numerical methodologies. We focus on the influence of 57Ni and its isobaric decay product 57Co in powering the late-time (t > 1000 d) light curves of SNe Ia. 57Ni and 57Co are neutron-rich relative to the more abundant radioisotope 56Ni, and are consequently a sensitive probe of neutronization at the higher densities of near-Chandrashekhar (near-MCh) progenitor WDs. We demonstrate that observations of one SN Ia event, SN 2015F is only consistent with a sub-Chandrasekhar (sub-MCh) WD progenitor. Observations of four other events (SN 2011fe, SN 2012cg, SN 2014J, and SN2013aa) are consistent with both near-MCh and sub-MCh progenitors. Continued observations of late-time light curves of nearby SNe Ia willmore »
We analyse new multifilter Hubble Space Telescope (HST) photometry of the normal Type Ia supernova (SN Ia) 2011fe out to ≈2400 d after maximum light, the latest observations to date of a SN Ia. We model the pseudo-bolometric light curve with a simple radioactive decay model and find energy input from both 57Co and 55Fe are needed to power the late-time luminosity. This is the first detection of 55Fe in a SN Ia. We consider potential sources of contamination such as a surviving companion star or delaying the deposition time-scale for 56Co positrons but these scenarios are ultimately disfavored. The relative isotopic abundances place direct constraints on the burning conditions experienced by the white dwarf (WD). Additionally, we place a conservative upper limit of <10−3 M⊙ on the synthesized mass of 44Ti. Only two classes of explosion models are currently consistent with all observations of SN 2011fe: (1) the delayed detonation of a low-ρc, near-MCh (1.2–1.3 M⊙) WD, or (2) a sub-MCh (1.0–1.1 M⊙) WD experiencing a thin-shell double detonation.
- Publication Date:
- NSF-PAR ID:
- 10378301
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 4119-4131
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Our recent work demonstrates a correlation between the high-velocity blue edge, vedge, of the ironpeak Fe/Co/Ni H-band emission feature and the optical light curve shape of normal, transitional and sub-luminous type Ia Supernovae (SNe Ia). We explain this correlation in terms of SN Ia physics. vedge corresponds to the sharp transition between the complete and incomplete silicon burning regions in the ejecta. It measures the point in velocity space where the outer 56Ni mass fraction, XNi, falls to the order of 0.03-0.10. For a given 56Ni mass, M(56Ni), vedge is sensitive to the speci c kinetic energy Ekin(M(56Ni)=MWD) of the corresponding region. Combining vedge with light curve parameters (i.e., sBV , m15;s in B and V ) allows us to distinguish between explosion scenarios. The correlation between vedge and light-curve shape is consistent with explosion models near the Chandrasekhar limit. However, the available sub-MCh WD explosion model based on SN 1999by exhibits velocities which are too large to explain the observations. Finally, the sub-luminous SN 2015bo exhibits signatures of a dynamical merger of two WDs demonstrating diversity among explosion scenarios at the faint end of the SNe Ia population.
-
Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit ( M Ch ≈ 1.4 M ⊙ ) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between M Ch and sub- M Ch events. In particular, it is thought that the higher-density ejecta of M Ch WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni II ] lines in late-time spectra (≳150 d past explosion). Aims. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from M Ch and sub- M Ch progenitors. We explore the potential for lines of [Ni II ] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass. Methods. We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D M Ch delayed-detonation and sub- M Ch detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58 Ni) and investigated the formation of [Ni II ] lines usingmore »
-
Abstract We present and analyze a near-infrared (NIR) spectrum of the underluminous Type Ia supernova SN 2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory, 191 days after B -band maximum. The spectrum is dominated by a number of broad emission features, including the [Fe ii ] at 1.644 μ m, which is highly asymmetric with a tilted top and a peak redshifted by ≈2000 km s −1 . In comparison with 2D non-LTE synthetic spectra computed from 3D simulations of off-center delayed-detonation Chandrasekhar-mass ( M ch ) white dwarf (WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitor’s envelope. We find that the size and tilt of the [Fe ii ] 1.644 μ m profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ∼4 × 10 9 g cm −3 . We also tentatively identify a stable Ni feature around 1.9 μ m characterized by a “pot-belly” profile that is slightly offset with respect to the kinematic center. In the casemore »
-
ABSTRACT The Type Ia supernovae (SNe Ia) 2011by, hosted in NGC 3972, and 2011fe, hosted in M101, are optical ‘twins,’ having almost identical optical light-curve shapes, colours, and near-maximum-brightness spectra. However, SN 2011fe had significantly more ultraviolet (UV; 1600 < λ < 2500 Å) flux than SN 2011by before and at peak luminosity. Several theoretical models predict that SNe Ia with higher progenitor metallicity should (1) have additional UV opacity and thus lower UV flux; (2) have an essentially unchanged optical spectral-energy distribution; (3) have a similar optical light-curve shape; and (4) because of the excess neutrons, produce more stable Fe-group elements at the expense of radioactive 56Ni and thus have a lower peak luminosity. Following these predictions, Foley and Kirshner suggested that the difference in UV flux between SNe 2011by and 2011fe was the result of their progenitors having significantly different metallicities. They also measured a large, but insignificant, difference between the peak absolute magnitudes of the SNe (ΔMV, peak = 0.60 ± 0.36 mag), with SN 2011fe being more luminous. We present a new Cepheid-based distance to NGC 3972, substantially improving the precision of the distance measurement for SN 2011by. With these new data, we determine that the SNe have significantly different peak luminosities (ΔMV, peak = 0.335 ± 0.069 mag). Consequently,more »