Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree $$\Delta $$ , then for every integer $$k \geq \Delta +1$$ , G has a proper colouring with k colours in which every two colour classes differ in size at most by $$1$$ ; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree $$\Delta $$ , then for each $$k \geq \Delta + 1$$ , G has a Borel proper k -colouring in which every two colour classes are related by an element of the Borel full semigroup of G . In particular, such colourings are equitable with respect to every G -invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable $$\Delta $$ -colourings of graphs with small average degree. Namely, we prove that if $$\Delta \geq 3$$ , G does not contain a clique on $$\Delta + 1$$ vertices and $$\mu $$ is an atomless G -invariant probability measure such that the average degree of G with respect to $$\mu $$ is at most $$\Delta /5$$ , then G has a $$\mu $$ -equitable $$\Delta $$ -colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.
more »
« less
Orienting Borel graphs
We investigate when a Borel graph admits a (Borel or measurable) orientation with outdegree bounded by k k for various cardinals k k . We show that for a probability measure preserving (p.m.p) graph G G , a measurable orientation can be found when k k is larger than the normalized cost of the restriction of G G to any positive measure subset. Using an idea of Conley and Tamuz, we can also find Borel orientations of graphs with subexponential growth; however, for every k k we also find graphs which admit measurable orientations with outdegree bounded by k k but no such Borel orientations. Finally, for special values of k k we bound the projective complexity of Borel k k -orientability for graphs and graphings of equivalence relations. It follows from these bounds that the set of equivalence relations admitting a Borel selector is Σ 2 1 \mathbf {\Sigma }_{2}^{1} in the codes, in stark contrast to the case of smooth relations.
more »
« less
- Award ID(s):
- 1764174
- PAR ID:
- 10378353
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society
- Volume:
- 150
- Issue:
- 754
- ISSN:
- 0002-9939
- Page Range / eLocation ID:
- 1779 to 1793
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call aproper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.more » « less
-
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $$n$$ -divisibility of actions. We consider the general question of when there are realizations of abstract systems of congruences satisfying various measurability constraints. We completely characterize which abstract systems of congruences can be realized by nonmeager Baire measurable pieces of the sphere under the action of rotations on the $$2$$ -sphere. This answers a question by Wagon. We also construct Borel realizations of abstract systems of congruences for the action of $$\mathsf{PSL}_{2}(\mathbb{Z})$$ on $$\mathsf{P}^{1}(\mathbb{R})$$ . The combinatorial underpinnings of our proof are certain types of decomposition of Borel graphs into paths. We also use these decompositions to obtain some results about measurable unfriendly colorings.more » « less
-
A long-standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we prove that this question always has a positive answer when the acting group is polycyclic, and we obtain a positive answer for all free actions of a large class of solvable groups including the Baumslag–Solitar group BS(1, 2) and the lamplighter group Z2 ≀ Z. This marks the first time that a group of exponential volume-growth has been verified to have this property. In obtaining this result we introduce a new tool for studying Borel equivalence relations by extending Gromov’s notion of asymptotic dimension to the Borel setting. We show that countable Borel equivalence relations of finite Borel asymptotic dimension are hyperfinite, and more generally we prove under a mild compatibility assumption that increasing unions of such equivalence relations are hyperfinite. As part of our main theorem, we prove for a large class of solvable groups that all of their free Borel actions have finite Borel asymptotic dimension (and finite dynamic asymptotic dimension in the case of a continuous action on a zero dimensional space). We also provide applications to Borel chromatic numbers, Borel and continuous Følner tilings, topological dynamics, and C∗-algebras.more » « less
-
We consider the question of orienting the edges in a graph G such that every vertex has bounded out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree at most α and, moreover, the best possible maximum out-degree of an orientation is at least α - 1. We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely studied approach for this problem in the distributed algorithms setting is a "peeling algorithm" that provides an orientation with maximum out-degree α(2+ε) in a logarithmic number of iterations. We consider this problem in the local computation algorithm (LCA) model, which quickly answers queries of the form "What is the orientation of edge (u,v)?" by probing the input graph. When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g., the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case where G has unbounded degree, we show that any LCA that orients its edges to yield maximum out-degree r must use Ω(√ n/r) probes to G per query in the worst case, even if G is known to be a forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G has unbounded degree. When G is a tree such that the maximum degree Δ of G is bounded, we demonstrate an algorithm that uses Δ n^{1-log_Δ r + o(1)} probes to G per query. To obtain this result, we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear probes per query.more » « less
An official website of the United States government

