skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Attention as a multi‐level system of weights and balances
Abstract This opinion piece is part of a collection on the topic: “What is attention?” Despite the word's place in the common vernacular, a satisfying definition for “attention” remains elusive. Part of the challenge is there exist many different types of attention, which may or may not share common mechanisms. Here we review this literature and offer an intuitive definition that draws from aspects of prior theories and models of attention but is broad enough to recognize the various types of attention and modalities it acts upon: attention as a multi‐level system of weights and balances. While the specific mechanism(s) governing the weighting/balancing may vary across levels, the fundamental role of attention is to dynamically weigh and balance all signals—both externally‐generated and internally‐generated—such that the highest weighted signals are selected and enhanced. Top‐down, bottom‐up, and experience‐driven factors dynamically impact this balancing, and competition occurs both within and across multiple levels of processing. This idea of a multi‐level system of weights and balances is intended to incorporate both external and internal attention and capture their myriad of constantly interacting processes. We review key findings and open questions related to external attention guidance, internal attention and working memory, and broader attentional control (e.g., ongoing competition between external stimuli and internal thoughts) within the framework of this analogy. We also speculate about the implications of failures of attention in terms of weights and balances, ranging from momentary one‐off errors to clinical disorders, as well as attentional development and degradation across the lifespan. This article is categorized under:Psychology > AttentionNeuroscience > Cognition  more » « less
Award ID(s):
1848939
PAR ID:
10378373
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Cognitive Science
Volume:
14
Issue:
1
ISSN:
1939-5078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This perspective piece discusses a set of attentional phenomena that are not easily accommodated within current theories of attentional selection. We call these phenomena attentional platypuses, as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models are in need of a revision. We list a few instances of the “attentional platypuses” and then offer a new approach, that we term dynamically weighted prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attentional allocation. We propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations. This article is categorized under:Psychology > AttentionPsychology > Perception and PsychophysicsNeuroscience > Cognition 
    more » « less
  2. Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN–hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN–hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention. SIGNIFICANCE STATEMENTHow does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention. 
    more » « less
  3. Summary The Jornada Basin Long‐Term Ecological Research Site (JRN‐LTER, or JRN) is a semiarid grassland–shrubland in southern New Mexico, USA. The role of intraspecific competition in constraining shrub growth and establishment at the JRN and in arid systems, in general, is an important question in dryland studies.Using information on shrub distributions and growth habits at the JRN, we present a novel landscape‐scale (c. 1 ha) metric (the ‘competition index’, CI), which quantifies the potential intensity of competitive interactions. We map and compare the intensity of honey mesquite (Prosopis glandulosa, Torr.) competition spatially and temporally across the JRN‐LTER, investigating associations of CI with shrub distribution, density, and soil types.The CI metric shows strong correlation with values of percent cover. Mapping CI across the Jornada Basin shows that high‐intensity intraspecific competition is not prevalent, with few locations where intense competition is likely to be limiting further honey mesquite expansion.Comparison of CI among physiographic provinces shows differences in average CI values associated with geomorphology, topography, and soil type, suggesting that edaphic conditions may impose important constraints on honey mesquite and growth. However, declining and negative growth rates with increasing CI suggest that intraspecific competition constrains growth rates when CI increases abovec. 0.5. 
    more » « less
  4. Abstract Attention control regulates efficient processing of goal‐relevant information by suppressing interference from irrelevant competing inputs while also flexibly allocating attention across relevant inputs according to task demands. Research has established that developing attention control skills promote effective learning by minimizing distractions from task‐irrelevant competing information. Additional research also suggests that competing contextual information can provide meaningful input for learning and should not always be ignored. Instead, attending to competing information that is relevant to task goals can facilitate and broaden the scope of children's learning. We review this past research examining effects of attending to task‐relevant and task‐irrelevant competing information on learning outcomes, focusing on relations between visual attention and learning in childhood. We then present a synthesis argument that complex interactions across learning goals, the contexts of learning environments and tasks, and developing attention control mechanisms will determine whether attending to competing information helps or hinders learning. This article is categorized under:Psychology > AttentionPsychology > LearningPsychology > Development and Aging 
    more » « less
  5. Abstract We build on the existing biased competition view to argue that attention is anemergentproperty of neural computations within and across hierarchically embedded and structurally connected cortical pathways. Critically then, one must ask,what is attention emergent from? Within this framework, developmental changes in the quality of sensory input and feedforward‐feedback information flow shape the emergence and efficiency of attention. Several gradients of developing structural and functional cortical architecture across the caudal‐to‐rostral axis provide the substrate for attention to emerge. Neural activity within visual areas depends on neuronal density, receptive field size, tuning properties of neurons, and the location of and competition between features and objects in the visual field. These visual cortical properties highlight the information processing bottleneck attention needs to resolve. Recurrent feedforward and feedback connections convey sensory information through a series of steps at each level of the cortical hierarchy, integrating sensory information across the entire extent of the cortical hierarchy and linking sensory processing to higher‐order brain regions. Higher‐order regions concurrently provide input conveying behavioral context and goals. Thus, attention reflects the output of a series of complex biased competition neural computations that occur within and across hierarchically embedded cortical regions. Cortical development proceeds along the caudal‐to‐rostral axis, mirroring the flow in sensory information from caudal to rostral regions, and visual processing continues to develop into childhood. Examining both typical and atypical development will offer critical mechanistic insight not otherwise available in the adult stable state. This article is categorized under:Psychology > Attention 
    more » « less