skip to main content


Title: A century of intermittent eco‐evolutionary feedbacks resulted in novel trait combinations in invasive Great Lakes alewives ( Alosa pseudoharengus )
Abstract

Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco‐evolutionary feedbacks with zooplankton size. Following their initial colonization of Lakes Ontario and Michigan, dense alewife populations likely depleted large‐bodied zooplankton, which drove a decrease in alewife gill raker spacing. However, the introduction of large, non‐native zooplankton to the Great Lakes in later decades resulted in an increase in gill raker spacing, and present‐day Great Lakes alewives have gill raker spacing patterns that are similar to the ancestral East Coast anadromous population. Conversely, contemporary Great Lakes alewife populations possess a gape width consistent with East Coast landlocked populations. Body shape showed remarkable parallel evolution with East Coast landlocked populations, likely due to a shared response to the loss of long‐distance movement or migrations. Our results suggest the colonization of a new environment and cessation of migration can result in rapid parallel evolution in some traits, but contingency also plays a role, and a dynamic ecosystem can also yield novel trait combinations.

 
more » « less
Award ID(s):
1754627
NSF-PAR ID:
10378411
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
13
Issue:
10
ISSN:
1752-4571
Page Range / eLocation ID:
p. 2630-2645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Eco-evolutionary interactions following ecosystem change provide critical insight into the ability of organisms to adapt to shifting resource landscapes. Here we explore evidence for the rapid parallel evolution of trout feeding morphology following eco-evolutionary interactions with zooplankton in alpine lakes stocked at different points in time in the Wind River Range (Wyoming, USA). In this system, trout predation has altered the zooplankton species community and driven a decrease in average zooplankton size. In some lakes that were stocked decades ago, we find shifts in gill raker traits consistent with the hypothesis that trout have rapidly adapted to exploit available smaller-bodied zooplankton more effectively. We explore this morphological response in multiple lake populations across two species of trout (cutthroat trout, Oncorhynchus clarkii, and golden trout Oncorhynchus aguabonita) and examine the impact of resource availability on morphological variation in gill raker number among lakes. Furthermore, we present genetic data to provide evidence that historically stocked cutthroat trout populations likely derive from multiple population sources, and incorporate variation from genomic relatedness in our exploration of environmental predictors of feeding morphology. These findings describe rapid adaptation and eco-evolutionary interactions in trout and document an evolutionary response to novel, contemporary ecosystem change.

     
    more » « less
  2. Abstract Aim

    Natural selection typically results in the homogenization of reproductive traits, reducing natural variation within populations; thus, highly polymorphic species present unresolved questions regarding the mechanisms that shape and maintain gene flow given a diversity of phenotypes. We used an integrative framework to characterize phenotypic diversity and assess how evolutionary history and population genetics affect the highly polymorphic nature of a California endemic lily.

    Location

    California, United States.

    Taxon

    Butterfly mariposa lily,Calochortus venustus(Liliaceae).

    Methods

    We summarized phenotypic diversity at both metapopulation and subpopulation scales to explore spatial phenotypic distributions. We sampled 174 individuals across the species range representing multiple samples for each population and each phenotype. We used restriction‐site‐associated DNA sequencing (RAD‐Seq) to detect population clusters, gene flow between phenotypes and between populations, infer haplotype networks, and reconstruct ancestral range evolution to infer historical migration and range expansion.

    Results

    Polymorphic floral traits within the species such as petal pigmentation and distal spots are geographically structured, and inferred evolutionary history is consistent with a ring species pattern involving a complex of populations having experienced sequential change in genetic and phenotypic variation from the founding population. Populations remain interconnected yet have differentiated from each other along a bifurcating south‐to‐north range expansion, consequently indicating parallel evolution towards the white morphotype in the northern range. Thus, our phylogeographical analyses reveal morphological convergence with population genetic cohesion irrespective of phenotypic diversity.

    Main conclusions

    Phenotypic variation in the highly polymorphicCalochortus venustusis not due to genetic differentiation between phenotypes; rather there is genetic cohesion within six geographically defined populations, some of which maintain a high level of within‐population phenotypic diversity. Our results demonstrate that analyses of polymorphic taxa greatly benefit from disentangling phenotype from genotype at various spatial scales. We discuss results in light of ring species concepts and the need to determine the adaptive significance of the patterns we report.

     
    more » « less
  3. Abstract

    Island spotted skunks (Spilogale gracilis amphiala) are a rare subspecies endemic to the California Channel Islands, currently extant on Santa Cruz and Santa Rosa islands. How and when skunks arrived on the islands is unknown, hindering decision-making about their taxonomic status and conservation priority. We investigated these questions by sequencing the complete mitochondrial genomes of 55 skunks from the two islands and mainland (California and Arizona) and examining phylogenetic patterns and estimations of isolation times among populations. Island spotted skunks grouped in a single monophyletic clade distinct from mainland spotted skunks. A haplotype network analysis had the most recent common ancestral haplotype sampled from an individual on Santa Rosa, suggesting both islands were colonized by a single matriline. Additionally, no haplotypes were shared between skunk populations on the two islands. These patterns imply that both island populations were derived from a common ancestral population shortly after establishment and have remained isolated from each other ever since. Together with divergence estimates from three methods, this topology is consistent with colonization of the super-island, Santarosae, by a single ancestral population of spotted skunks in the early Holocene, followed by divergence as the sea level rose and split Santarosae into Santa Cruz and Santa Rosa islands 9,400–9,700 years ago. Such a scenario of colonization could be explained either by rafting or one-time transport by Native Americans. Given their distinct evolutionary history, high levels of endemism, and current population status, island spotted skunks may warrant management as distinct evolutionarily significant units.

     
    more » « less
  4. Abstract

    For regions that were covered by ice during the Pleistocene glaciations, species must have emigrated from unglaciated regions. However, it can be difficult to discern when and from what ancestral source populations such expansions took place, especially since warming climates introduce the possibility of very recent expansions. For example, in the Great Lakes region, pronounced climatic change includes past glaciations as well as recent, rapid warming. Here we evaluate different expansion hypotheses with a genomic study of the white-footed mouse (Peromyscus leucopus noveboracensis), which is one of the most common mammals throughout the Great Lakes region. Ecological surveys coupled with historical museum records suggest a recent range expansion of P. leucopus associated with the warming climate over the last decades. These detailed records have yet to be complemented by genomic data that provide the requisite resolution for detecting recent expansion, although some mitochondrial DNA (mtDNA) sequences have suggested possible hypotheses about the geography of expansion. With more than 7,000 loci generated using RADseq, we evaluate support for multiple hypotheses of a geographic expansion in the Upper Peninsula of Michigan (UP). Analysis of a single random single-nucleotide polymorphism per locus revealed a fine-scale population structure separating the Lower Peninsula (LP) population from all other populations in the UP. We also detected a genetic structure that reflects an evolutionary history of postglacial colonization from two different origins into the UP, one coming from the LP and one coming from the west. Instead of supporting a climate-driven range expansion, as suggested by field surveys, our results support more ancient postglacial colonization of the UP from two different ancestral sources. With these results, we offer new insights about P. leucopus geographic expansion history, as well as a more general phylogeographic framework for testing range shifts in the Great Lakes region.

     
    more » « less
  5. Abstract

    An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly,Rhagoletis pomonella(Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis(Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domesticaBorkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host‐associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple‐infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life‐history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasiiLindl.) and an introduced species (Crataegus monogynaJacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi‐directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply thatR. pomonellacan both possess and retain extensive‐standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.

     
    more » « less