skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to describe collective decay of uncoupled modes in the input–output formalism
We extend the input–output formalism to study the behavior of uncoupled discrete modes (bosonic cavity modes and fermionic qubits) when they decay to the same Markovian continuum. When the continuum interacts with only a single mode, this decay is irreversible. However, when multiple modes decay to the same Markovian continuum they develop correlations and decay collectively. In the input–output formalism these correlations manifest in additional terms in the quantum Langevin equation. For two modes, this collective decay can dramatically extend the lifetimes of both modes (Dicke subradiance) and, within the single-mode subsystem, induces non-Markovian memory effects including energy backflow.  more » « less
Award ID(s):
2116246
PAR ID:
10378503
Author(s) / Creator(s):
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
39
Issue:
12
ISSN:
0740-3224; JOBPDE
Format(s):
Medium: X Size: Article No. 3128
Size(s):
Article No. 3128
Sponsoring Org:
National Science Foundation
More Like this
  1. The vibrational modes of semiconductor and metal nanostructures occur in the MHz to GHz frequency range, depending on dimensions. These modes are at the heart of nano-optomechanical devices, and understanding how they dissipate energy is important for applications of the devices. In this paper ultrafast transient absorption microscopy has been used to examine the breathing modes of a single gold nanoplate, where up to four overtones were observed. Analysis of the frequencies and amplitudes of the modes using a simple continuum mechanics model shows that the system behaves as a free plate, even though it is deposited onto a surface with no special preparation. The overtones decay faster than the fundamental mode, which is not predicted by continuum mechanics calculations of mode damping due to radiation of sound waves. Possible reasons for this effect include frequency dependent thermoelastic effects in the nanoplate, and/or flow of acoustic energy out of the excitation region. 
    more » « less
  2. We study the average intensity-intensity correlations signal at the output of a two-mode squeezing device with |𝑁𝑁⟩⊗|𝛼𝛼⟩ as the two input modes. We show that the input photon-number can be resolved from the average intensity-intensity correlations. In particular, we show jumps in the average intensity-intensity correlations signal as a function of input photon-number N. Therefore, we propose that such a device may be deployed as photon-number resolving detector at room temperature with high efficiency. 
    more » « less
  3. Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light and matter, in which strong coupling, bath structure, and propagation delays can break the radiative conditions that quantum emitters typically encounter in free space. These characteristics intertwine the excitations of quantum emitters and guided radiation modes to form complex multiphoton dynamics. So far, combining the collective decay of the emitters with the non-Markovian effects induced by the modes has escaped a full solution and the detailed physics behind these systems remains unknown. Here we analyze such a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop an exact solution for this system in terms of elementary functions that unveils hidden symmetries and predicts new forms of spontaneous decay. The collective non-Markovian dynamics, which are strongly dependent on the vacuum coupling and the detuning from the center of the band, show exotic features that can be characterized with a simple and readily available criterion. Our analytic methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems. Published by the American Physical Society2024 
    more » « less
  4. null (Ed.)
    For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynamical systems (the system operation modes). Depending on the mode the system is operating on, the output trajectory is generated by one of these systems in response to driving inputs. Output measurements and driving inputs are sent to the cloud for processing purposes. We capture this "processing" through some function (of the input-output trajectory) that we require the cloud to compute accurately - referred here as the trajectory utility. However, for privacy reasons, we would like to keep the mode private, i.e., we do not want the cloud to correctly identify what mode of the CPS produced a given trajectory. To this end, we distort trajectories before transmission and send the corrupted data to the cloud. We provide mathematical tools (based on output-regulation techniques) to properly design distorting mechanisms so that: 1) the original and distorted trajectories lead to the same utility; and the distorted data leads the cloud to misclassify the mode. 
    more » « less
  5. Abstract Two quantitative notions of mixing are the decay of correlations and the decay of a mix-norm—a negative Sobolev norm—and the intensity of mixing can be measured by the rates of decay of these quantities. From duality, correlations are uniformly dominated by a mix-norm; but can they decay asymptotically faster than the mix-norm? We answer this question by constructing an observable with correlation that comes arbitrarily close to achieving the decay rate of the mix-norm. Therefore the mix-norm is the sharpest rate of decay of correlations in both the uniform sense and the asymptotic sense. Moreover, there exists an observable with correlation that decays at the same rate as the mix-norm if and only if the rate of decay of the mix-norm is achieved by its projection onto low-frequency Fourier modes. In this case, the function being mixed is called q -recurrent ; otherwise it is q - transient . We use this classification to study several examples and raise questions for future investigations. 
    more » « less