skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Model of How Student Definitions of Substitution and Equivalence May Relate to Their Conceptualizations of Algebraic Transformation.
This empirical paper explores students’ conceptions of transformation as substitution equivalence by linking it to their definitions of substitution and equivalence. This work draws on Sfard’s (1995) framework to conceptualize conceptions of substitution equivalence and its components, equivalence and substitution, each on a spectrum from computational to structural. We provide examples of student work to illustrate how students’ understandings of substitution, equivalence, and substitution equivalence as an approach to justifying transformation may relate to one another.  more » « less
Award ID(s):
1760491
PAR ID:
10378564
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Cho, Sung Je
Date Published:
Journal Name:
Proceedings for the 12th Congress of the European Society for Research in Mathematics Education (CERME12)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Karunakaran, S. S.; Higgins, A. (Ed.)
    This theoretical paper explores student conceptions of transformation as substitution equivalence by linking it to their definitions of substitution and equivalence. This work draws on the work of Sfard (1995) to conceptualize substitution equivalence and its components, equivalence and substitution, as a spectrum from computational to structural. We provide examples of students’ work to illustrate how student notions of substitution, equivalence, and substitution equivalence as an approach to justifying transformation may related to one another. 
    more » « less
  2. Cook, S.; Infante, N. (Ed.)
    In this theoretical paper, we describe how algebraic transformation could be reconceptualized as a process of substitution equivalence, and we discuss how this conceptualization affords mathematical justification of transformation processes. In particular, we describe a model which deconstructs the process of substitution equivalence into core subdomains which could be learned serially and then re-integrated, in order to make them accessible to students with lower prior knowledge in syntactic reasoning. Our aim in presenting this model is to start a conversation about what the core components of knowledge might be in order for students to reason about and justify algebraic transformation using symbolic representations. 
    more » « less
  3. Cho, Sung Je (Ed.)
    In this study, we describe a model of student thinking around equivalence (conceptualized as any type of equivalence relation), presenting vignettes from student conceptions from various college courses ranging from developmental to linear algebra. In this model, we conceptualize student definitions along a continuous plane with two-dimensions: the extent to which definitions are extracted vs. stipulated; and the extent to which conceptions of equivalence are operational or structural. We present examples to illustrate how this model may help us to recognize ill-defined or operational thinking on the part of students even when they appear to be able to provide “standard” definitions of equivalence, as well as to highlight cases in which students are providing mathematically valid, if non-standard, definitions of equivalence. We hope that this framework will serve as a useful tool for analyzing student work and exploring instructional and curricular handling of equivalence. 
    more » « less
  4. Karunakaran, S. S.; & Higgins, A. (Ed.)
    This paper describes a model of student thinking around equivalence (conceptualized as any type of equivalence relation), presenting vignettes from student conceptions from various college courses ranging from developmental to linear algebra, and courses in between (e.g., calculus). In this model, we conceptualize student definitions along a continuous plane with two dimensions: the extent to which definitions are extracted vs. stipulated; and the extent to which conceptions of equivalence are operational or structural. We present examples to illustrate how this model may help us to recognize ill-defined or limited thinking on the part of students even when they appear to be able to provide “standard” definitions of equivalence, as well as to highlight cases in which students are providing mathematically valid, if non-standard, definitions of equivalence. We hope that this framework will serve as a useful tool for analyzing student work, as well as exploring instructional and curricular handling of equivalence. 
    more » « less
  5. Inprasitha, Maitree; Changsri, Narumon; Boonsena, Nisakorn (Ed.)
    Substitution is a key idea that is woven throughout the mathematics curriculum. In secondary school, substitution is described as an interchangeability of equal numbers, and then as a method for finding solutions of systems of equations. In university, substitution is used as a means to recognize familiar structures in Integral Calculus. Despite its prevalence in mathematics, there is little research on substitution, especially on students’ understanding of substitution. This work aims to investigate students’ meanings for substitution, and how they use it. We draw on Tall and Vinner’s (1981) ideas of concept definition and concept image to explore students’ meanings of substitution through their personal definitions of substitution, what they identify as substitution, and how they perform substitution. In this presentation, we report on elementary algebra students’ responses to questions about substitution. Data comes includes written responses to multiple-choice and open-ended questions and transcripts from clinical interviews across multiple semesters at a community college. Through a combination of thematic and conceptual analysis, we categorized students’ thinking about substitution and what features appeared to impact how they enact it. We found that students often identify substitution as a process of replacement of one mathematical object for another but differ in the generality of the mathematical objects that they consider (e.g., strictly as the replacement of a number for a variable versus replacement of any expression for another expression). Students further differed in whether or not they thought that substitution entailed equivalence of the objects being replaced. When performing substitution (e.g., substituting x+1 for y in 2y^2), we found that students’ activity was heavily based on their understanding of the structure of the expression where the substitution is taking place (the unified ‘pieces’ of 2y^2). In addition to other findings, we elaborate on the mental processes that students engage in when performing substitution and synthesize our findings with the notion of substitution equivalence (Wladis et al., 2020). 
    more » « less