skip to main content


Title: The TESS–Keck Survey. VI. Two Eccentric Sub-Neptunes Orbiting HIP-97166
Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sin i = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10 5 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc −1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.  more » « less
Award ID(s):
1717000
NSF-PAR ID:
10378633
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
162
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The early K-type T-Tauri star, V1298 Tau (V= 10 mag, age ≈ 20–30 Myr) hosts four transiting planets with radii ranging from 4.9 to 9.6R. The three inner planets have orbital periods of ≈8–24 days while the outer planet’s period is poorly constrained by single transits observed with K2 and the Transiting Exoplanet Survey Satellite (TESS). Planets b, c, and d are proto–sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modeling analysis, which includes recently obtained TESS photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (≈2σ) RV detection of planet c, implying a mass of19.88.9+9.3Mand a conservative 2σupper limit of <39M. For planets b and d, we derive 2σupper limits ofMb< 159MandMd< 41M, respectively. For planet e, plausible discrete periods ofPe> 55.4 days are ruled out at the 3σlevel while seven solutions with 43.3 <Pe/d< 55.4 are consistent with the most probable 46.768131 ± 000076 days solution within 3σ. Adopting the most probable solution yields a 2.6σRV detection with a mass of 0.66 ± 0.26MJup. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (∼5% by mass) H2envelope.

     
    more » « less
  2. ABSTRACT

    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P  = 14.245651 d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 h observation for the transits of both planets using ESA CHEOPS. We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the 3 yr photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp  =  $1.829_{-0.067}^{+0.096}$ R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp  = $2.40_{-0.08}^{+0.10}$ R⊕ for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.

     
    more » « less
  3. Abstract

    We report the discovery and confirmation of the Transiting Exoplanet Survey Satellite (TESS) single-transit, warm and dense sub-Saturn, TIC 139270665 b. This planet is unusually dense for its size: with a bulk density of 2.13 g cm−3(0.645RJ, 0.463MJ), it is the densest warm sub-Saturn of the TESS family. It orbits a metal-rich G2 star. We also found evidence of a second planet, TIC 139270665 c, with a longer period of1010220+780days and minimum massMPsiniof4.890.37+0.66MJ. First clues of TIC 139270665 b’s existence were found by citizen scientists inspecting TESS photometric data from sector 47 in 2022 January. Radial velocity measurements from the Automated Planet Finder combined with TESS photometry and spectral energy distributions viaEXOFASTv2system modeling suggested a23.6240.031+0.030day orbital period for TIC 139270665 b and also showed evidence for the second planet. Based on this estimated period, we mobilized the Unistellar citizen science network for photometric follow-up, capitalizing on their global distribution to capture a second transit of TIC 139270665 b. This citizen science effort also served as a test bed for an education initiative that integrates young students into modern astrophysics data collection. The Unistellar photometry did not definitively detect a second transit, but did enable us to further constrain the planet’s period. As a transiting, warm, and dense sub-Saturn, TIC 139270665 b represents an interesting laboratory for further study to enhance our models of planetary formation and evolution.

     
    more » « less
  4. ABSTRACT

    We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of $2.699835^{+0.000004}_{-0.000003}$ d, a radius of 5.24 ± 0.09 R⊕, and a mass of 42 ± 3 M⊕, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn–mass planet on a moderately eccentric orbit ($0.13^{+0.07}_{-0.09}$) with a minimum mass of 84 ± 7 M⊕ and a period of $443^{+11}_{-13}$ d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.

     
    more » « less
  5. A planet’s orbital alignment places important constraints on how a planet formed and consequently evolved. The dominant formation pathway of ultra-short-period planets (P < 1 day) is particularly mysterious as such planets most likely formed further out, and it is not well understood what drove their migration inwards to their current positions. Measuring the orbital alignment is difficult for smaller super-Earth/sub-Neptune planets, which give rise to smaller amplitude signals. Here we present radial velocities across two transits of 55 Cancri (Cnc) e, an ultra-short-period super-Earth, observed with the Extreme Precision Spectrograph. Using the classical Rossiter–McLaughlin method, we measure 55 Cnc e’s sky-projected stellar spin–orbit alignment (that is, the projected angle between the The star 55 Cancri (Cnc) A hosts five known exoplanets with minimum mass estimates ranging from approximately 8M⊕ to 3MJup and periods less than one day to nearly 20 years1–4. Of particular interest has been 55 Cnc e, one of the most massive known ultra-short-period planets (USPs) and the only planet around 55 Cnc found to transit5,6. It has an star’s spin axis and the planet’s orbit normal—will shed light on the formation and evolution of USPs, especially in the case of compact, multiplanet systems. It has been shown that USPs form a statistically distinct popula- tion of planets9 that tend to be misaligned with other planetary orbits in their system10. This suggests that USPs experience a unique migra- tion pathway that brings them close in to their host stars. This inward migration is most likely driven by dissipation due to star–planet tidal interactions that result from either non-zero eccentricities11,12 or plan- etary spin-axis tilts13. orbital period of 0.7365474 +1.3 × 10−6 days, a mass of 7.99 ± 0.33M −1.4 × 10−6 ⊕ and a radius of 1.853 +0.026 R⊕ (refs. 7,8). A precise measure of the −0.027 stellar spin–orbit alignment of 55 Cnc e—the angle between the host planet’s orbital axis and its host star’s spin axis) to be λ = 10 +17∘ with an +14∘ −20∘ unprojected angle of ψ = 23 −12∘. The best-fit Rossiter–McLaughlin model to the Extreme Precision Spectrograph data has a radial velocity semi- amplitude of just 0.41 +0.09 m s−1. The spin–orbit alignment of 55 Cnc e −0.10 favours dynamically gentle migration theories for ultra-short-period planets, namely tidal dissipation through low-eccentricity planet–planet interactions and/or planetary obliquity tides. 
    more » « less