skip to main content


Title: Gene flow biases population genetic inference of recombination rate
Abstract

Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the recombination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assumption is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20–50% depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombination rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying these methods.

 
more » « less
NSF-PAR ID:
10378839
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
11
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urbanization is decreasing wildlife habitat and connectivity worldwide, including for apex predators, such as the puma (Puma concolor). Puma populations along California's central and southern coastal habitats have experienced rapid fragmentation from development, leading to calls for demographic and genetic management. To address urgent conservation genomic concerns, we used double‐digest restriction‐site associated DNA (ddRAD) sequencing to analyze 16,285 genome‐wide single‐nucleotide polymorphisms (SNPs) from 401 pumas sampled broadly across the state. Our analyses indicated support for 4–10 geographically nested, broad‐ to fine‐scale genetic clusters. At the broadest scale, the four genetic clusters had high genetic diversity and exhibited low linkage disequilibrium, indicating that pumas have retained genomic diversity statewide. However, multiple lines of evidence indicated substructure, including 10 finer‐scale genetic clusters, some of which exhibited fixed alleles and linkage disequilibrium. Fragmented populations along the Southern Coast and Central Coast had particularly low genetic diversity and strong linkage disequilibrium, indicating genetic drift and close inbreeding. Our results demonstrate that genetically at risk populations are typically nested within a broader‐scale group of interconnected populations that collectively retain high genetic diversity and heterogenous fixations. Thus, extant variation at the broader scale has potential to restore diversity to local populations if management actions can enhance vital gene flow and recombine locally sequestered genetic diversity. These state‐ and genome‐wide results are critically important for science‐based conservation and management practices. Our nested population genomic analysis highlights the information that can be gained from population genomic studies aiming to provide guidance for the conservation of fragmented populations.

     
    more » « less
  2. Kosiol, Carolin (Ed.)
    Abstract

    Meiotic recombination landscapes differ greatly between distantly and closely related taxa, populations, individuals, sexes, and even within genomes; however, the factors driving this variation are yet to be well elucidated. Here, we directly estimate contemporary crossover rates and, for the first time, noncrossover rates in rhesus macaques (Macaca mulatta) from four three-generation pedigrees comprising 32 individuals. We further compare these results with historical, demography-aware, linkage disequilibrium–based recombination rate estimates. From paternal meioses in the pedigrees, 165 crossover events with a median resolution of 22.3 kb were observed, corresponding to a male autosomal map length of 2,357 cM—approximately 15% longer than an existing linkage map based on human microsatellite loci. In addition, 85 noncrossover events with a mean tract length of 155 bp were identified—similar to the tract lengths observed in the only other two primates in which noncrossovers have been studied to date, humans and baboons. Consistent with observations in other placental mammals with PRDM9-directed recombination, crossover (and to a lesser extent noncrossover) events in rhesus macaques clustered in intergenic regions and toward the chromosomal ends in males—a pattern in broad agreement with the historical, sex-averaged recombination rate estimates—and evidence of GC-biased gene conversion was observed at noncrossover sites.

     
    more » « less
  3. Sil, Anita (Ed.)
    Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A . fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence–absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A . fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A . fumigatus , with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence–absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A . fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi. 
    more » « less
  4. null (Ed.)
    Abstract Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories. 
    more » « less
  5. We present a comprehensive statistical framework to analyze data from genome-wide association studies of polygenic traits, producing interpretable findings while controlling the false discovery rate. In contrast with standard approaches, our method can leverage sophisticated multivariate algorithms but makes no parametric assumptions about the unknown relation between genotypes and phenotype. Instead, we recognize that genotypes can be considered as a random sample from an appropriate model, encapsulating our knowledge of genetic inheritance and human populations. This allows the generation of imperfect copies (knockoffs) of these variables that serve as ideal negative controls, correcting for linkage disequilibrium and accounting for unknown population structure, which may be due to diverse ancestries or familial relatedness. The validity and effectiveness of our method are demonstrated by extensive simulations and by applications to the UK Biobank data. These analyses confirm our method is powerful relative to state-of-the-art alternatives, while comparisons with other studies validate most of our discoveries. Finally, fast software is made available for researchers to analyze Biobank-scale datasets. 
    more » « less