skip to main content


Title: Spectral analysis of ultra-cool white dwarfs polluted by planetary debris
ABSTRACT

We identify two ultra-cool (${T_\mathrm{eff}}\lt 4000$ K) metal-polluted (DZ) white dwarfs WD J2147−4035 and WD J1922+0233 as the coolest and second coolest DZ stars known to date with ${T_\mathrm{eff}}\approx 3050$ K and ${T_\mathrm{eff}}\approx 3340$ K, respectively. Strong atmospheric collision-induced absorption (CIA) causes the suppression of red optical and infrared flux in WD J1922+0233, resulting in an unusually blue colour given its low temperature. WD J2147−4035 has moderate infrared CIA yet has the reddest optical colours known for a DZ white dwarf. Microphysics improvements to the non-ideal effects and CIA opacities in our model atmosphere code yields reasonable solutions to observations of these ultra-cool stars. WD J2147−4035 has a cooling age of over 10 Gyr which is the largest known for a DZ white dwarf, whereas WD J1922+0233 is slightly younger with a cooling age of 9 Gyr. Galactic kinematics calculations from precise Gaia EDR3 astrometry reveal these ultra-cool DZ stars as likely members of the Galactic disc thus they could be pivotal objects in future studies constraining an upper age limit for the disc of the Milky Way. We present intermediate-resolution spectroscopy for both objects, which provides the first spectroscopic observations of WD J2147−4035. Detections of sodium and potassium are made in both white dwarfs, in addition to calcium in WD J1922+0233 and lithium in WD J2147−4035. We identify the magnetic nature of WD J2147−4035 from Zeeman splitting in the lithium line and also make a tentative detection of carbon, so we classify this star as DZQH. WD J1922+0233 likely accreted planetary crust debris, while the debris composition that polluted WD J2147−4035 remains unconstrained.

 
more » « less
NSF-PAR ID:
10378856
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4557-4574
Size(s):
["p. 4557-4574"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Binaries consisting of a hot subdwarf star and an accreting white dwarf (WD) are sources of gravitational wave radiation at low frequencies and possible progenitors of Type Ia supernovae if the WD mass is large enough. Here, we report the discovery of the third binary known of this kind: It consists of a hot subdwarf O (sdO) star and a WD with an orbital period of 3.495 h and an orbital shrinkage of 0.1 s in 6 yr. The sdO star overfills its Roche lobe and likely transfers mass to the WD via an accretion disc. From spectroscopy, we obtain an effective temperature of $T_{\mathrm{eff}}=54\, 240\pm 1840$ K and a surface gravity of log g = 4.841 ± 0.108 for the sdO star. From the light curve analysis, we obtain an sdO mass of MsdO = 0.55 M⊙ and a mass ratio of q = MWD/MsdO = 0.738 ± 0.001. Also, we estimate that the disc has a radius of $\sim\!0.41\ \mathrm{R}_\odot$ and a thickness of $\sim\!0.18\ \mathrm{R}_\odot$. The origin of this binary is probably a common envelope ejection channel, where the progenitor of the sdO star is either a red giant branch star or, more likely, an early asymptotic giant branch star; the sdO star will subsequently evolve into a WD and merge with its WD companion, likely resulting in an R Coronae Borealis (R CrB) star. The outstanding feature in the spectrum of this object is strong Ca H&K lines, which are blueshifted by ∼200 km s−1 and likely originate from the recently ejected common envelope, and we estimated that the remnant common envelope (CE) material in the binary system has a density $\sim\!6\times 10^{-10}\ {\rm g\, cm}^{-3}$.

     
    more » « less
  2. ABSTRACT

    We analyse two binary systems containing giant stars, V723 Mon (‘the Unicorn’) and 2M04123153+6738486 (‘the Giraffe’). Both giants orbit more massive but less luminous companions, previously proposed to be mass-gap black holes. Spectral disentangling reveals luminous companions with star-like spectra in both systems. Joint modelling of the spectra, light curves, and spectral energy distributions robustly constrains the masses, temperatures, and radii of both components: the primaries are luminous, cool giants ($T_{\rm eff,\, giant} = 3800$ and $4000\, \rm K$, $R_{\rm giant}= 22.5$ and $25\, {\rm R}_{\odot }$) with exceptionally low masses ($M_{\rm giant} \approx 0.4\, {\rm M}_{\odot }$) that likely fill their Roche lobes. The secondaries are only slightly warmer subgiants ($T_{\rm eff,\, 2} = 5800$ and $5150\, \rm K$, $R_2= 8.3$ and $9\, {\rm R}_{\odot }$) and thus are consistent with observed UV limits that would rule out main-sequence stars with similar masses ($M_2 \approx 2.8$ and ${\approx}1.8\, {\rm M}_{\odot }$). In the Unicorn, rapid rotation blurs the spectral lines of the subgiant, making it challenging to detect even at wavelengths where it dominates the total light. Both giants have surface abundances indicative of CNO processing and subsequent envelope stripping. The properties of both systems can be reproduced by binary evolution models in which a $1{-}2\, {\rm M}_{\odot }$ primary is stripped by a companion as it ascends the giant branch. The fact that the companions are also evolved implies either that the initial mass ratio was very near unity, or that the companions are temporarily inflated due to rapid accretion. The Unicorn and Giraffe offer a window into into a rarely observed phase of binary evolution preceding the formation of wide-orbit helium white dwarfs, and eventually, compact binaries containing two helium white dwarfs.

     
    more » « less
  3. ABSTRACT

    This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs.

     
    more » « less
  4. ABSTRACT

    A large fraction of white dwarfs (WDs) have metal-polluted atmospheres, which are produced by accreting material from remnant planetary systems. The composition of the accreted debris broadly resembles that of rocky Solar system objects. Volatile-enriched debris with compositions similar to long-period comets (LPCs) is rarely observed. We attempt to reconcile this dearth of volatiles with the premise that exo-Oort clouds (XOCs) occur around a large fraction of planet-hosting stars. We estimate the comet accretion rate from an XOC analytically, adapting the ‘loss cone’ theory of LPC delivery in the Solar system. We investigate the dynamical evolution of an XOC during late stellar evolution. Using numerical simulations, we show that 1–30 per cent of XOC objects remain bound after anisotropic stellar mass-loss imparting a WD natal kick of ${\sim}1 \, {\rm km \, s^{-1}}$. We also characterize the surviving comets’ distribution function. Surviving planets orbiting a WD can prevent the accretion of XOC comets by the star. A planet’s ‘dynamical barrier’ is effective at preventing comet accretion if the energy kick imparted by the planet exceeds the comet’s orbital binding energy. By modifying the loss cone theory, we calculate the amount by which a planet reduces the WD’s accretion rate. We suggest that the scarcity of volatile-enriched debris in polluted WDs is caused by an unseen population of 10–$100 \, \mathrm{au}$ scale giant planets acting as barriers to incoming LPCs. Finally, we constrain the amount of volatiles delivered to a planet in the habitable zone of an old, cool WD.

     
    more » « less
  5. ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared. 
    more » « less