Tectonic processes control hot spring temperature and geochemistry, yet how this in turn shapes microbial community composition is poorly understood. Here, we present geochemical and 16 S rRNA gene sequencing data from 14 hot springs from contrasting styles of subduction along a convergent margin in the Peruvian Andes. We find that tectonic influence on hot spring temperature and geochemistry shapes microbial community composition. Hot springs in the flat-slab and back-arc regions of the subduction system had similar pH but differed in geochemistry and microbiology, with significant relationships between microbial community composition, geochemistry, and geologic setting. Flat-slab hot springs were chemically heterogeneous, had modest surface temperatures (up to 45 °C), and were dominated by members of the metabolically diverse phylum Proteobacteria. Whereas, back-arc hot springs were geochemically more homogenous, exhibited high concentrations of dissolved metals and gases, had higher surface temperatures (up to 81 °C), and host thermophilic archaeal and bacterial lineages.
Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with the geochemistry of the thermal springs. This is a novel finding and suggests that a previously overlooked component of thermal springs may have a significant impact on microbial community composition.
more » « less- PAR ID:
- 10378871
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas
nifH gene encoding nitrogenase increased in the warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community. -
The surficial hydrothermal sediments of Guaymas Basin harbor complex microbial communities where oxidative and reductive nitrogen, sulfur, and carbon-cycling populations and processes overlap and coexist. Here, we resolve microbial community profiles in hydrothermal sediment cores of Guaymas Basin on a scale of 2 millimeters, using Denaturing Gradient Gel Electrophoresis (DGGE) to visualize the rapid downcore changes among dominant bacteria and archaea. DGGE analysis of bacterial 16S rRNA gene amplicons identified free-living and syntrophic deltaproteobacterial sulfate-reducing bacteria, fermentative Cytophagales, members of the Chloroflexi (Thermoflexia), Aminicenantes, and uncultured sediment clades. The DGGE pattern indicates a gradually changing downcore community structure where small changes on a 2-millimeter scale accumulate to significantly changing populations within the top 4 cm sediment layer. Functional gene DGGE analyses identified anaerobic methane-oxidizing archaea (ANME) based on methyl-coenzyme M reductase genes, and members of the Betaproteobacteria and Thaumarchaeota based on bacterial and archaeal ammonia monooxygenase genes, respectively. The co-existence and overlapping habitat range of aerobic, nitrifying, sulfate-reducing and fermentative bacteria and archaea, including thermophiles, in the surficial sediments is consistent with dynamic redox and thermal gradients that sustain highly complex microbial communities in the hydrothermal sediments of Guaymas Basin.more » « less
-
Terrestrial serpentinizing systems allow us insight into the realm of alkaliphilic microbial communities driven by geology in a way that is frequently more accessible than their deep subsurface or marine counterparts. However, these systems are also marked by geochemical and microbial community variation due to the interactions of serpentinized fluids with host geology and the surface environment. To separate the transient from the endemic microbes in a hyperalkaline environment, we assessed the Ney Springs terrestrial serpentinizing system microbial community and geochemistry at six time points over the span of a year. Using 16S rRNA gene surveys we observed 93 amplicon sequence variants (ASVs) that were found at every sampling event. This is compared to ~17,000 transient ASVs that were detected only once across the six sampling events. Of the resident community members, 16 of these ASVs were regularly greater than 1% of the community during every sampling period. Additionally, many of these core taxa experienced statistically significant changes in relative abundance with time. Variation in the abundance of some core populations correlated with geochemical variation. For example, members of the Tindallia group, showed a positive correlation with variation in levels of ammonia at the spring. Investigating the metagenome assembled genomes of these microbes revealed evidence of the potential for ammonia generation via Stickland reactions within Tindallia . This observation offers new insight into the origin of high ammonia concentrations (>70 mg/L) seen at this site. Similarly, the abundance of putative sulfur-oxidizing microbes like Thiomicrospira , Halomonas , and a Rhodobacteraceae species could be linked to changes observed in sulfur-oxidation intermediates like tetrathionate and thiosulfate. While these data supports the influence of core microbial community members on a hyperalkaline spring’s geochemistry, there is also evidence that subsurface processes affect geochemistry and may impact community dynamics as well. Though the physiology and ecology of these astrobiologically relevant ecosystems are still being uncovered, this work helps identify a stable microbial community that impacts spring geochemistry in ways not previously observed in serpentinizing ecosystems.more » « less
-
Abstract Identifying a common set of genes that mediate host–microbial interactions across populations and species of mammals has broad relevance for human health and animal biology. However, the genetic basis of the gut microbial composition in natural populations remains largely unknown outside of humans. Here, we used wild house mouse populations as a model system to ask three major questions: (a) Does host genetic relatedness explain interindividual variation in gut microbial composition? (b) Do population differences in the microbiota persist in a common environment? (c) What are the host genes associated with microbial richness and the relative abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut microbial composition as characterized by 16S amplicon sequencing. Using a common garden approach, we then identified differences in microbial composition between populations that persisted in a shared laboratory environment. Finally, we used exome sequencing to associate host genetic variants with microbial diversity and relative abundance of microbial taxa in wild mice. We identified 20 genes that were associated with microbial diversity or abundance including a macrophage‐derived cytokine (
IL12a ) that contained three nonsynonymous mutations. Surprisingly, we found a significant overrepresentation of candidate genes that were previously associated with microbial measurements in humans. The homologous genes that overlapped between wild mice and humans included genes that have been associated with traits related to host immunity and obesity in humans. Gene–bacteria associations identified in both humans and wild mice suggest some commonality to the host genetic determinants of gut microbial composition across mammals.