Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with more »
- Publication Date:
- NSF-PAR ID:
- 10378871
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Raina, Jean-Baptiste (Ed.)ABSTRACT Microbial relationships are critical to coral health, and changes in microbiomes are often exhibited following environmental disturbance. However, the dynamics of coral-microbial composition and external factors that govern coral microbiome assembly and response to disturbance remain largely uncharacterized. Here, we investigated how antibiotic-induced disturbance affects the coral mucus microbiota in the facultatively symbiotic temperate coral Astrangia poculata , which occurs naturally with high (symbiotic) or low (aposymbiotic) densities of the endosymbiotic dinoflagellate Breviolum psygmophilum . We also explored how differences in the mucus microbiome of natural and disturbed A. poculata colonies affected levels of extracellular superoxide, a reactive oxygen species thought to have both beneficial and detrimental effects on coral health. Using a bacterial and archaeal small-subunit (SSU) rRNA gene sequencing approach, we found that antibiotic exposure significantly altered the composition of the mucus microbiota but that it did not influence superoxide levels, suggesting that superoxide production in A. poculata is not influenced by the mucus microbiota. In antibiotic-treated A. poculata exposed to ambient seawater, mucus microbiota recovered to its initial state within 2 weeks following exposure, and six bacterial taxa played a prominent role in this reassembly. Microbial composition among symbiotic colonies was more similar throughout the 2-weekmore »
-
Abstract. Mangrove forests are ecosystems that constitute a large portion of the world's coastline and span tidal zones below, between, and above thewaterline, and the ecosystem as a whole is defined by the health of these tidal microhabitats. However, we are only beginning to understand tidal-zone microbial biodiversity and the role of these microbiomes in nutrient cycling. While extensive research has characterized microbiomes inpristine vs. anthropogenically impacted mangroves, these have, largely, overlooked differences in tidal microhabitats (sublittoral, intertidal, andsupralittoral). Unfortunately, the small number of studies that have sought to characterize mangrove tidal zones have occurred in impacted biomes,making interpretation of the results difficult. Here, we characterized prokaryotic populations and their involvement in nutrient cycling across thetidal zones of a pristine mangrove within a Brazilian Environmental Protection Area of the Atlantic Forest. We hypothesized that the tidal zones inpristine mangroves are distinct microhabitats, which we defined as distinct regions that present spatial variations in the water regime and otherenvironmental factors, and as such, these are composed of different prokaryotic communities with distinct functional profiles. Samples werecollected in triplicate from zones below, between, and above the tidal waterline. Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, we found distinctprokaryotic communities with significantlymore »
-
Abstract Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8–1.0 °C for 10 years and then 1.5–2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas
nifH gene encoding nitrogenase increased in the warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community. -
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata . Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus , Photobacterium rosenbergii ).more »
-
Martiny, Jennifer B. (Ed.)ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quartermore »