skip to main content


Title: Melanesia holds the world’s most diverse and intact insular amphibian fauna
Abstract

Identifying hotspots of biological diversity is a key step in conservation prioritisation. Melanesia—centred on the vast island of New Guinea—is increasingly recognised for its exceptionally species-rich and endemic biota. Here we show that Melanesia has the world’s most diverse insular amphibian fauna, with over 7% of recognised global frog species in less than 0.7% of the world’s land area, and over 97% of species endemic. We further estimate that nearly 200 additional candidate species have been discovered but remain unnamed, pointing to a total fauna in excess of 700 species. Nearly 60% of the Melanesian frog fauna is in a lineage of direct-developing microhylids characterised by smaller distributions than co-occurring frog families, suggesting lineage-specific high beta diversity is a key driver of Melanesian anuran megadiversity. A comprehensive conservation status assessment further highlights geographic concentrations of recently described range-restricted threatened taxa that warrant urgent conservation actions. Nonetheless, by world standards, the Melanesian frog fauna is relatively intact, with 6% of assessed species listed as threatened and no documented extinctions; and thus it provides an unparalleled opportunity to understand and conserve a megadiverse and relatively intact insular biota.

 
more » « less
NSF-PAR ID:
10378873
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
5
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Madagascar is one of the world’s foremost biodiversity hotspots. Its unique assemblage of plants, animals, and fungi—the majority of which evolved on the island and occur nowhere else—is both diverse and threatened. After human arrival, the island’s entire megafauna became extinct, and large portions of the current flora and fauna may be on track for a similar fate. Conditions for the long-term survival of many Malagasy species are not currently met because of multiple anthropogenic threats. ADVANCES We review the extinction risk and threats to biodiversity in Madagascar, using available international assessment data as well as a machine learning analysis to predict the extinction risks and threats to plant species lacking assessments. Our compilation of global International Union for Conservation of Nature (IUCN) Red List assessments shows that overexploitation alongside unsustainable agricultural practices affect 62.1 and 56.8% of vertebrate species, respectively, and each affects nearly 90% of all plant species. Other threats have a relatively minor effect today but are expected to increase in coming decades. Because only one-third (4652) of all Malagasy plant species have been formally assessed, we carried out a neural network analysis to predict the putative status and threats for 5887 unassessed species and to evaluate biases in current assessments. The percentage of plant species currently assessed as under threat is probably representative of actual numbers, except in the case of the ferns and lycophytes, where significantly more species are estimated to be threatened. We find that Madagascar is home to a disproportionately high number of Evolutionarily Distinct and Globally Endangered (EDGE) species. This further highlights the urgency for evidence-based and effective in situ and ex situ conservation. Despite these alarming statistics and trends, we find that 10.4% of Madagascar’s land area is protected and that the network of protected areas (PAs) covers at least part of the range of 97.1% of terrestrial and freshwater vertebrates with known distributions (amphibians, freshwater fishes, reptiles, birds, and mammal species combined) and 67.7% of plant species (for threatened species, the percentages are 97.7% for vertebrates and 79.6% for plants). Complementary to this, ex situ collections hold 18% of vertebrate species and 23% of plant species. Nonetheless, there are still many threatened species that do not occur within PAs and are absent from ex situ collections, including one amphibian, three mammals, and seven reptiles, as well as 559 plants and more yet to be assessed. Based on our updated vegetation map, we find that the current PA network provides good coverage of the major habitats, particularly mangroves, spiny forest, humid forest, and tapia, but subhumid forest and grassland-woodland mosaic have very low areas under protection (5.7 and 1.8% respectively). OUTLOOK Madagascar is among the world’s poorest countries, and its biodiversity is a key resource for the sustainable future and well-being of its citizens. Current threats to Madagascar’s biodiversity are deeply rooted in historical and present social contexts, including widespread inequalities. We therefore propose five opportunities for action to further conservation in a just and equitable way. First, investment in conservation and restoration must be based on evidence and effectiveness and be tailored to meet future challenges through inclusive solutions. Second, expanded biodiversity monitoring, including increased dataset production and availability, is key. Third, improving the effectiveness of existing PAs—for example through community engagement, training, and income opportunities—is more important than creating new ones. Fourth, conservation and restoration should not focus solely on the PA network but should also include the surrounding landscapes and communities. And finally, conservation actions must address the root causes of biodiversity loss, including poverty and food insecurity. In the eyes of much of the world, Madagascar’s biodiversity is a unique global asset that needs saving; in the daily lives of many of the Malagasy people, it is a rapidly diminishing source of the most basic needs for subsistence. Protecting Madagascar’s biodiversity while promoting social development for its people is a matter of the utmost urgency Visual representation of five key opportunities for conserving and restoring Madagascar’s rapidly declining biodiversity identified in this Review. The dashed lines point to representative vegetation types where these recommendations could have tangible effects, but the opportunities are applicable across Madagascar. ILLUSTRATION: INESSA VOET 
    more » « less
  2. Abstract

    Cryptic ecologies, the Wallacean Shortfall of undocumented species’ geographical ranges and the Linnaean Shortfall of undescribed diversity, are all major barriers to conservation assessment. When these factors overlap with drivers of extinction risk, such as insular distributions, the number of threatened species in a region or clade may be underestimated, a situation we term ‘cryptic extinction risk’. The genusLepidodactylusis a diverse radiation of insular and arboreal geckos that occurs across the western Pacific. Previous work onLepidodactylusshowed evidence of evolutionary displacement around continental fringes, suggesting an inherent vulnerability to extinction from factors such as competition and predation. We sought to (1) comprehensively review status and threats, (2) estimate the number of undescribed species, and (3) estimate extinction risk in data deficient and candidate species, inLepidodactylus. From our updated IUCN Red List assessment, 60% of the 58 recognized species are threatened (n = 15) or Data Deficient (n = 21), which is higher than reported for most other lizard groups. Species from the smaller and isolated Pacific islands are of greatest conservation concern, with most either threatened or Data Deficient, and all particularly vulnerable to invasive species. We estimated 32 undescribed candidate species and linear modelling predicted that an additional 18 species, among these and the data deficient species, are threatened with extinction. Focusing efforts to resolve the taxonomy and conservation status of key taxa, especially on small islands in the Pacific, is a high priority for conserving this remarkably diverse, yet poorly understood, lizard fauna. Our data highlight how cryptic ecologies and cryptic diversity combine and lead to significant underestimation of extinction risk.

     
    more » « less
  3. BACKGROUND The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await. 
    more » « less
  4. Mills, Harriet (Ed.)

    Context Skinks comprise the dominant component of the terrestrial vertebrate fauna in Oceania, New Guinea, and Eastern Wallacea (ONGEW). However, knowledge of their diversity is incomplete, and their conservation needs are poorly understood. Aims To explore the diversity and threat status of the skinks of ONGEW and identify knowledge gaps and conservation needs. Methods We compiled a list of all skink species occurring in the region and their threat categories designated by the International Union for Conservation of Nature. We used available genetic sequences deposited in the National Center for Biotechnology Information’s GenBank to generate a phylogeny of the region’s skinks. We then assessed their diversity within geographical sub-divisions and compared to other reptile taxa in the region. Key results Approximately 300 species of skinks occur in ONGEW, making it the second largest global hotspot of skink diversity following Australia. Many phylogenetic relationships remain unresolved, and many species and genera are in need of taxonomic revision. One in five species are threatened with extinction, a higher proportion than almost all reptile families in the region. Conclusions ONGEW contain a large proportion of global skink diversity on <1% of the Earth’s landmass. Many are endemic and face risks such as habitat loss and invasive predators. Yet, little is known about them, and many species require taxonomic revision and threat level re-assessment. Implications The skinks of ONGEW are a diverse yet underexplored group of terrestrial vertebrates, with many species likely facing extreme risks in the near future. Further research is needed to understand the threats they face and how to protect them.

     
    more » « less
  5. Premise

    The Caribbean islands are in the top five biodiversity hotspots on the planet; however, the biogeographic history of the seasonally dry tropical forest (SDTF) there is poorly studied.Consoleaconsists of nine species of dioecious, hummingbird‐pollinated tree cacti endemic to the West Indies, which form a conspicuous element of the SDTF. Several species are threatened by anthropogenic disturbance, disease, sea‐level rise, and invasive species and are of conservation concern. However, no comprehensive phylogeny yet exists for the clade.

    Methods

    We reconstructed the phylogeny ofConsolea, sampling all species using plastomic data to determine relationships, understand the evolution of key morphological characters, and test their biogeographic history. We estimated divergence times to determine the role climate change may have played in shaping the current diversity of the clade.

    Results

    Consoleaappears to have evolved very recently during the latter part of the Pleistocene on Cuba/Hispaniola likely from a South American ancestor and, from there, moved into the Bahamas, Jamaica, Puerto Rico, Florida, and the Lesser Antilles. The tree growth form is a synapomorphy ofConsoleaand likely aided in the establishment and diversification of the clade.

    Conclusions

    Pleistocene aridification associated with glaciation likely played a role in shaping the current diversity ofConsolea, and insular gigantism may have been a key innovation leading to the success of these species to invade the often‐dense SDTF. This in‐situ Caribbean radiation provides a window into the generation of species diversity and the complexity of the SDTF community within the Antilles.

     
    more » « less