skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A biologically plausible parser
We describe a parser of English effectuated by biologically plausible neurons and synapses, and implemented through the Assembly Calculus, a recently proposed computational framework for cognitive function. We demonstrate that this device is capable of correctly parsing reasonably nontrivial sentences.1 While our experiments entail rather simple sentences in English, our results suggest that the parser can be extended beyond what we have implemented, to several directions encompassing much of language. For example, we present a simple Russian version of the parser, and discuss how to handle recursion, embedding, and polysemy.  more » « less
Award ID(s):
2134059
PAR ID:
10378906
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
9
ISSN:
2307-387X
Page Range / eLocation ID:
1374-1388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language. Our methodology is to (1) generate training data automatically in the target language by augmenting machine-translated datasets with local entities scraped from public websites, (2) add a few-shot boost of human-translated sentences and train a novel XLMR-LSTM semantic parser, and (3) test the model on natural utterances curated using human translators. We assess the effectiveness of our approach by extending the current capabilities of Schema2QA, a system for English Question Answering (QA) on the open web, to 10 new languages for the restaurants and hotels domains. Our model achieves an overall test accuracy ranging between 61% and 69% for the hotels domain and between 64% and 78% for restaurants domain, which compares favorably to 69% and 80% obtained for English parser trained on gold English data and a few examples from validation set. We show our approach outperforms the previous state-of-the-art methodology by more than 30% for hotels and 40% for restaurants with localized ontologies for the subset of languages tested. Our methodology enables any software developer to add a new language capability to a QA system for a new domain, leveraging machine translation, in less than 24 hours. Our code is released open-source. 
    more » « less
  2. Unscoped Episodic Logical Forms (ULF) is a semantic representation for English sentences which captures semantic type structure, allows for linguistic inferences, and provides a basis for further resolution into Episodic Logic (EL). We present an application of pre-trained autoregressive language models to the task of rendering ULFs into English, and show that ULF's properties reduce the required training data volume for this approach when compared to AMR. We also show that the same system, when applied in reverse, performs well as an English-to-ULF parser. 
    more » « less
  3. Unscoped Logical Form (ULF) of Episodic Logic is a meaning representation format that captures the overall semantic type structure of natural language while leaving certain finer details, such as word sense and quantifier scope, underspecified for ease of parsing and annotation. While a learned parser exists to convert English to ULF, its performance is severely limited by the lack of a large dataset to train the system. We present a ULF dataset augmentation method that samples type-coherent ULF expressions using the ULF semantic type system and filters out samples corresponding to implausible English sentences using a pretrained language model. Our data augmentation method is configurable with parameters that trade off between plausibility of samples with sample novelty and augmentation size. We find that the best configuration of this augmentation method substantially improves parser performance beyond using the existing unaugmented dataset. 
    more » « less
  4. Abstract Computational models of infant word‐finding typically operate over transcriptions of infant‐directed speech corpora. It is now possible to test models of word segmentation on speech materials, rather than transcriptions of speech. We propose that such modeling efforts be conducted over the speech of the experimental stimuli used in studies measuring infants' capacity for learning from spoken sentences. Correspondence with infant outcomes in such experiments is an appropriate benchmark for models of infants. We demonstrate such an analysis by applying the DP‐Parser model of Algayres and colleagues to auditory stimuli used in infant psycholinguistic experiments by Pelucchi and colleagues. The DP‐Parser model takes speech as input, and creates multiple overlapping embeddings from each utterance. Prospective words are identified as clusters of similar embedded segments. This allows segmentation of each utterance into possible words, using a dynamic programming method that maximizes the frequency of constituent segments. We show that DP‐Parse mimics American English learners' performance in extracting words from Italian sentences, favoring the segmentation of words with high syllabic transitional probability. This kind of computational analysis over actual stimuli from infant experiments may be helpful in tuning future models to match human performance. 
    more » « less
  5. Recent systems for converting natural language descriptions into regular expressions (regexes) have achieved some success, but typically deal with short, formulaic text and can only produce simple regexes. Real-world regexes are complex, hard to describe with brief sentences, and sometimes require examples to fully convey the user’s intent. We present a framework for regex synthesis in this setting where both natural language (NL) and examples are available. First, a semantic parser (either grammar-based or neural) maps the natural language description into an intermediate sketch, which is an incomplete regex containing holes to denote missing components. Then a program synthesizer searches over the regex space defined by the sketch and finds a regex that is consistent with the given string examples. Our semantic parser can be trained purely from weak supervision based on correctness of the synthesized regex, or it can leverage heuristically derived sketches. We evaluate on two prior datasets (Kushman and Barzilay 2013 ; Locascio et al. 2016 ) and a real-world dataset from Stack Overflow. Our system achieves state-of-the-art performance on the prior datasets and solves 57% of the real-world dataset, which existing neural systems completely fail on. 1 
    more » « less