skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive Digital Fabrication Machine Control Directly Within a CAD Environment
Interactive fabrication aims to close the gap between design and fabrication, allowing for rich interactions with materials and reflection in action. Drawing from craft practice, we contribute software that enables real-time control of digital fabrication machines from a Computer-Aided Design (CAD) environment. Our software not only allows interactive control of toolpath geometry, but also enables the control of machine parameters such as speed, acceleration, or jerk. This creates new opportunities for toolpath and material exploration. We evaluate our software with a professional glass artist on a custom digital fabrication machine that can accommodate multiple tools such as brushes, engraving bits, or microscopes. Finally, we reflect on implications for machine control.  more » « less
Award ID(s):
2007045
PAR ID:
10378922
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Interactive Digital Fabrication Machine Control Directly Within a CAD Environment
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how professionals use digital fabrication in production workflows is critical for future research in digital fabrication technologies. We interviewed thirteen professionals who use digital fabrication for the low-volume manufacturing of commercial products. From these interviews, we describe the workflows used for nine products created with a variety of materials and manufacturing methods. We show how digital fabrication professionals use software development to support physical production, how they rely on multiple partial representations in development, how they develop manufacturing processes, and how machine control is its own design space. We build from these findings to argue that future digital fabrication systems should support the exploration of material and machine behavior alongside geometry, that simulation is insufficient for understanding the design space, and that material constraints and resource management are meaningful design dimensions to support. By observing how professionals learn, we suggest ways digital fabrication systems can scaffold the mastery of new fabrication techniques. 
    more » « less
  2. Machine settings and tuning are critical for digital fabrication outcomes. However, exploring these parameters is non-trivial. We seek to enable exploration of the full design space of digital fabrication. To identify where we might intervene, we studied how practitioners approach 3D printing. We found that beyond using CAD/CAM, they create bespoke routines and workflows to explore interdependent material and machine settings. We seek to provide a system that supports this workflow development. We identified design goals around material exploration, fine-tuned control, and iteration. Based on these, we present p5.fab, a system for controlling digital fabrication machines from the creative coding environment p5.js. We demonstrate p5.fab with examples of 3D prints that cannot be made with traditional 3D printing software. We evaluate p5.fab in workshops and find that it encourages novel printing workflows and artifacts. Finally, we discuss implications for future digital fabrication systems. 
    more » « less
  3. This paper describes an architecture for control and monitoring of a 5-axis computer numerical control (CNC) machine tool directly from a computer-aided manufacturing (CAM) system without reliance on the text-based G-Code toolpath definition format that is currently standard in industrial practice. Instead of defining a toolpath as a set of geometric primitives as is done with G-Code, this architecture utilizes a high-speed bidirectional data pathway between the CAM system and the CNC machine to transfer dense time samples of axis position information between the CAM system and the servo controllers of the machine tool’s motion control system in near-realtime. Time samples of axis position are created using a time-optimal trajectory planning algorithm instead of a proprietary trajectory planning strategy that is common in industrial CNC systems. The developed architecture is machine agnostic, and can be used both for enhanced control of machine tool motion and powerful visualization and analysis tasks. An implementation of the system using an open-source machine tool controller known as Machinekit is presented, and a Digital Twin of the machine tool is constructed in the CAM system and shown to be capable of visualizing the as-executed toolpath during machine operation. 
    more » « less
  4. Abstract: With recent interest in shape-changing interfaces, material-driven design, wearable technologies, and soft robotics, digital fabrication of soft actuatable material is increasingly in demand. Much of this research focuses on elastomers or non-stretchy air bladders. Computationally-controlled machine knitting offers an alternative fabrication technology which can rapidly produce soft textile objects that have a very different character: breathable, lightweight, and pleasant to the touch. These machines are well established and optimized for the mass production of garments, but compared to other digital fabrication techniques such as CNC machining or 3D printing, they have received much less attention as general purpose fabrication devices. In this work, we explore new ways to employ machine knitting for the creation of actuated soft objects. We describe the basic operation of this type of machine, then show new techniques for knitting tendon-based actuation into objects. We explore a series of design strategies for integrating tendons with shaping and anisotropic texture design. Finally, we investigate different knit material properties, including considerations for motor control and sensing. 
    more » « less
  5. Clay 3D printing provides the benefits of digital fabrication automation and reconfigurability through a method that evokes manual clay coiling. Existing design technologies for clay 3D printing reflect the general 3D printing workflow in which solid forms are designed in CAD and then converted into a toolpath. In contrast, in hand-coiling, form is determined by the actions taken by the artist’s hands through space in response to the material. We theorized that an action-oriented approach for clay 3D printing could allow creators to design digital fabrication toolpaths that reflect clay material properties. We present CoilCAM, a domain-specific CAM programming system that supports the integrated generation of parametric forms and surface textures through mathematically defined toolpath operations. We developed CoilCAM in collaboration with ceramics professionals and evaluated CoilCAM’s relevance to manual ceramics by reinterpreting hand-made ceramic vessels. This process revealed the importance of iterative variation and embodied experience in action-oriented workflows. 
    more » « less