skip to main content


Title: COVID‐19 as a Blood Clotting Disorder Masquerading as a Respiratory Illness: A Cerebrovascular Perspective and Therapeutic Implications for Stroke Thrombectomy
ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) as the name suggests was initially thought to only cause a respiratory illness. However, several reports have been published of patients with ischemic strokes in the setting of coronavirus disease 2019 (COVID‐19). The mechanisms of how SARS‐CoV‐2 results in blood clots and large vessel strokes need to be defined as it has therapeutic implications. SARS‐CoV‐2 enters the blood stream by breaching the blood‐air barrier via the lung capillary adjacent to the alveolus, and then attaches to the angiotensin‐converting enzyme II receptors on the endothelial cells. Once SARS‐CoV‐2 enters the blood stream, a cascade of events (Steps 1‐8) unfolds including accumulation of angiotensin II, reactive oxygen species, endothelial dysfunction, oxidation of beta 2 glycoprotein 1, formation of antiphospholipid antibody complexes promoting platelet aggregation, coagulation cascade, and formation of cross‐linked fibrin blood clots, leading to pulmonary emboli (PE) and large vessel strokes seen on angiographic imaging studies. There is emerging evidence for COVID‐19 being a blood clotting disorder and SARS‐CoV‐2 using the respiratory route to enter the blood stream. As the blood‐air barrier is breached, varying degrees of collateral damage occur. Although antiviral and immune therapies are studied, the role of blood thinners in the prevention, and management of blood clots in Covid‐19 need evaluation. In addition to ventilators and blood thinners, continuous aspiration and clot retrieval devices (approved in Europe, cleared in the United States) or cyclical aspiration devices (approved in Europe) need to be considered for the emergent management of life‐threatening clots including PE and large vessel strokes.

 
more » « less
NSF-PAR ID:
10378985
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Neuroimaging
Volume:
30
Issue:
5
ISSN:
1051-2284
Page Range / eLocation ID:
p. 555-561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au–S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen–antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form “hot spots” to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light–matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in “hot spot” positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus. 
    more » « less
  2. null (Ed.)
    The novel coronavirus disease 2019 (COVID-19) pandemic has disrupted modern societies and their economies. The resurgence in COVID-19 cases as part of the second wave is observed across Europe and the Americas. The scientific response has enabled a complete structural characterization of the Severe Acute Respiratory Syndrome—novel Coronavirus 2 (SARS-CoV-2). Among the most relevant proteins required by the novel coronavirus to facilitate the cell entry mechanism is the spike protein. This protein possesses a receptor-binding domain (RBD) that binds the cellular angiotensin-converting enzyme 2 (ACE2) and then triggers the fusion of viral and host cell membranes. In this regard, a comprehensive characterization of the structural stability of the spike protein is a crucial step to find new therapeutics to interrupt the process of recognition. On the other hand, it has been suggested that the participation of more than one RBD is a possible mechanism to enhance cell entry. Here, we discuss the protein structural stability based on the computational determination of the dynamic contact map and the energetic difference of the spike protein conformations via the mapping of the hydration free energy by the Poisson–Boltzmann method. We expect our result to foster the discussion of the number of RBD involved during recognition and the repurposing of new drugs to disable the recognition by discovering new hotspots for drug targets apart from the flexible loop in the RBD that binds the ACE2. 
    more » « less
  3. null (Ed.)
    The COVID-19 pandemic has highlighted the need to quickly and reliably prioritize clinically approved compounds for their potential effectiveness for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs experimentally screened in VeroE6 cells, as well as the list of drugs in clinical trials that capture the medical community’s assessment of drugs with potential COVID-19 efficacy. We find that no single predictive algorithm offers consistently reliable outcomes across all datasets and metrics. This outcome prompted us to develop a multimodal technology that fuses the predictions of all algorithms, finding that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We screened in human cells the top-ranked drugs, obtaining a 62% success rate, in contrast to the 0.8% hit rate of nonguided screenings. Of the six drugs that reduced viral infection, four could be directly repurposed to treat COVID-19, proposing novel treatments for COVID-19. We also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-based mechanisms that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development. 
    more » « less
  4. Abstract

    There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long‐term consequences of the disease remain poorly understood. It first seemed like the SARS‐CoV‐2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood–brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well‐known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID‐19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID‐19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.

     
    more » « less
  5. The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC. 
    more » « less