skip to main content


Title: Semi‐supervised joint learning for longitudinal clinical events classification using neural network models

The success of deep learning neural network models often relies on the accessibility of a large number of labelled training data. In many health care settings, however, only a small number of accurately labelled data are available while unlabelled data are abundant. Further, input variables such as clinical events in the medical settings are usually of longitudinal nature, which poses additional challenges. In this paper, we propose a semi‐supervised joint learning method for classifying longitudinal clinical events. Specifically, our model consists of a sequence generative model and a label prediction model, and the two parts are learned end to end using both labelled and unlabelled data in a joint manner to obtain better prediction performance. Using five mortality‐related classification tasks on the Medical Information Mart for Intensive Care (MIMIC) III database, we demonstrate that the proposed method outperforms the purely supervised method that uses labelled data only and existing two‐step semi‐supervised methods.

 
more » « less
NSF-PAR ID:
10379001
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
9
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Archaeology has long faced fundamental issues of sampling and scalar representation. Traditionally, the local-to-regional-scale views of settlement patterns are produced through systematic pedestrian surveys. Recently, systematic manual survey of satellite and aerial imagery has enabled continuous distributional views of archaeological phenomena at interregional scales. However, such ‘brute force’ manual imagery survey methods are both time- and labour-intensive, as well as prone to inter-observer differences in sensitivity and specificity. The development of self-supervised learning methods (e.g. contrastive learning) offers a scalable learning scheme for locating archaeological features using unlabelled satellite and historical aerial images. However, archaeological features are generally only visible in a very small proportion relative to the landscape, while the modern contrastive-supervised learning approach typically yields an inferior performance on highly imbalanced datasets. In this work, we propose a framework to address this long-tail problem. As opposed to the existing contrastive learning approaches that typically treat the labelled and unlabelled data separately, our proposed method reforms the learning paradigm under a semi-supervised setting in order to fully utilize the precious annotated data (<7% in our setting). Specifically, the highly unbalanced nature of the data is employed as the prior knowledge in order to form pseudo negative pairs by ranking the similarities between unannotated image patches and annotated anchor images. In this study, we used 95,358 unlabelled images and 5,830 labelled images in order to solve the issues associated with detecting ancient buildings from a long-tailed satellite image dataset. From the results, our semi-supervised contrastive learning model achieved a promising testing balanced accuracy of 79.0%, which is a 3.8% improvement as compared to other state-of-the-art approaches. 
    more » « less
  2. null (Ed.)
    Graph-based semi-supervised learning is the problem of propagating labels from a small number of labelled data points to a larger set of unlabelled data. This paper is concerned with the consistency of optimization-based techniques for such problems, in the limit where the labels have small noise and the underlying unlabelled data is well clustered. We study graph-based probit for binary classification, and a natural generalization of this method to multi-class classification using one-hot encoding. The resulting objective function to be optimized comprises the sum of a quadratic form defined through a rational function of the graph Laplacian, involving only the unlabelled data, and a fidelity term involving only the labelled data. The consistency analysis sheds light on the choice of the rational function defining the optimization. 
    more » « less
  3. Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. In settings where unlabelled speech is the only available resource, such embeddings can be used in "zero-resource" speech search, indexing and discovery systems. Here we propose to train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zero-resource languages. For this transfer learning approach, we consider two multilingual recurrent neural network models: a discriminative classifier trained on the joint vocabularies of all training languages, and a correspondence autoencoder trained to reconstruct word pairs. We test these using a word discrimination task on six target zero-resource languages. When trained on seven well-resourced languages, both models perform similarly and outperform unsupervised models trained on the zero-resource languages. With just a single training language, the second model works better, but performance depends more on the particular training--testing language pair. 
    more » « less
  4. Standard software analytics often involves having a large amount of data with labels in order to commission models with acceptable performance. However, prior work has shown that such require- ments can be expensive, taking several weeks to label thousands of commits, and not always available when traversing new research problems and domains. Unsupervised Learning is a promising di- rection to learn hidden patterns within unlabelled data, which has only been extensively studied in defect prediction. Nevertheless, unsupervised learning can be ineffective by itself and has not been explored in other domains (e.g., static analysis and issue close time). Motivated by this literature gap and technical limitations, we present FRUGAL, a tuned semi-supervised method that builds on a simple optimization scheme that does not require sophisticated (e.g., deep learners) and expensive (e.g., 100% manually labelled data) methods. FRUGAL optimizes the unsupervised learner’s con- figurations (via a simple grid search) while validating our design decision of labelling just 2.5% of the data before prediction. As shown by the experiments of this paper FRUGAL outperforms the state-of-the-art adoptable static code warning recognizer and issue closed time predictor, while reducing the cost of labelling by a factor of 40 (from 100% to 2.5%). Hence we assert that FRUGAL can save considerable effort in data labelling especially in validating prior work or researching new problems. Based on this work, we suggest that proponents of complex and expensive methods should always baseline such methods against simpler and cheaper alternatives. For instance, a semi-supervised learner like FRUGAL can serve as a baseline to the state-of-the-art software analytics. 
    more » « less
  5. ABSTRACT Introduction

    Remote military operations require rapid response times for effective relief and critical care. Yet, the military theater is under austere conditions, so communication links are unreliable and subject to physical and virtual attacks and degradation at unpredictable times. Immediate medical care at these austere locations requires semi-autonomous teleoperated systems, which enable the completion of medical procedures even under interrupted networks while isolating the medics from the dangers of the battlefield. However, to achieve autonomy for complex surgical and critical care procedures, robots require extensive programming or massive libraries of surgical skill demonstrations to learn effective policies using machine learning algorithms. Although such datasets are achievable for simple tasks, providing a large number of demonstrations for surgical maneuvers is not practical. This article presents a method for learning from demonstration, combining knowledge from demonstrations to eliminate reward shaping in reinforcement learning (RL). In addition to reducing the data required for training, the self-supervised nature of RL, in conjunction with expert knowledge-driven rewards, produces more generalizable policies tolerant to dynamic environment changes. A multimodal representation for interaction enables learning complex contact-rich surgical maneuvers. The effectiveness of the approach is shown using the cricothyroidotomy task, as it is a standard procedure seen in critical care to open the airway. In addition, we also provide a method for segmenting the teleoperator’s demonstration into subtasks and classifying the subtasks using sequence modeling.

    Materials and Methods

    A database of demonstrations for the cricothyroidotomy task was collected, comprising six fundamental maneuvers referred to as surgemes. The dataset was collected by teleoperating a collaborative robotic platform—SuperBaxter, with modified surgical grippers. Then, two learning models are developed for processing the dataset—one for automatic segmentation of the task demonstrations into a sequence of surgemes and the second for classifying each segment into labeled surgemes. Finally, a multimodal off-policy RL with rewards learned from demonstrations was developed to learn the surgeme execution from these demonstrations.

    Results

    The task segmentation model has an accuracy of 98.2%. The surgeme classification model using the proposed interaction features achieved a classification accuracy of 96.25% averaged across all surgemes compared to 87.08% without these features and 85.4% using a support vector machine classifier. Finally, the robot execution achieved a task success rate of 93.5% compared to baselines of behavioral cloning (78.3%) and a twin-delayed deep deterministic policy gradient with shaped rewards (82.6%).

    Conclusions

    Results indicate that the proposed interaction features for the segmentation and classification of surgical tasks improve classification accuracy. The proposed method for learning surgemes from demonstrations exceeds popular methods for skill learning. The effectiveness of the proposed approach demonstrates the potential for future remote telemedicine on battlefields.

     
    more » « less