skip to main content

Title: Linear types for large-scale systems verification
Reasoning about memory aliasing and mutation in software verification is a hard problem. This is especially true for systems using SMT-based automated theorem provers. Memory reasoning in SMT verification typically requires a nontrivial amount of manual effort to specify heap invariants, as well as extensive alias reasoning from the SMT solver. In this paper, we present a hybrid approach that combines linear types with SMT-based verification for memory reasoning. We integrate linear types into Dafny, a verification language with an SMT backend, and show that the two approaches complement each other. By separating memory reasoning from verification conditions, linear types reduce the SMT solving time. At the same time, the expressiveness of SMT queries extends the flexibility of the linear type system. In particular, it allows our linear type system to easily and correctly mix linear and nonlinear data in novel ways, encapsulating linear data inside nonlinear data and vice-versa. We formalize the core of our extensions, prove soundness, and provide algorithms for linear type checking. We evaluate our approach by converting the implementation of a verified storage system (about 24K lines of code and proof) written in Dafny, to use our extended Dafny. The resulting system uses linear types for 91% of the code and SMT-based heap reasoning for the remaining 9%. We show that the converted system has 28% fewer lines of proofs and 30% shorter verification time overall. We discuss the development overhead in the original system due to SMT-based heap reasoning and highlight the improved developer experience when using linear types.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Page Range / eLocation ID:
1 to 28
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To verify distributed systems, prior work introduced a methodology for verifying both the code running on individual machines and the correctness of the overall system when those machines interact via an asynchronous distributed environment. The methodology requires neither domain-specific logic nor tooling. However, distributed systems are only one instance of the more general phenomenon of systems code that interacts with an asynchronous environment. We argue that the software of a storage system can (and should!) be viewed similarly. We evaluate this approach in VeriSafeKV, a key-value store based on a state-of-the-art B^ε-tree. In building VeriSafeKV, we introduce new techniques to scale automated verification to larger code bases, still without introducing domain-specific logic or tooling. In particular, we show a discipline that keeps the automated verification development cycle responsive. We also combine linear types with dynamic frames to relieve the programmer from most heap-reasoning obligations while enabling them to break out of the linear type system when needed. VeriSafeKV exhibits similar query performance to unverified databases. Its insertion performance is 15× faster than unverified BerkeleyDB and 6× slower than RocksDB. 
    more » « less
  2. We introduce Flux, which shows how logical refinements can work hand in glove with Rust's ownership mechanisms to yield ergonomic type-based verification of low-level pointer manipulating programs. First, we design a novel refined type system for Rust that indexes mutable locations, with pure (immutable) values that can appear in refinements, and then exploits Rust's ownership mechanisms to abstract sub-structural reasoning about locations within Rust's polymorphic type constructors, while supporting strong updates. We formalize the crucial dependency upon Rust's strong aliasing guarantees by exploiting the Stacked Borrows aliasing model to prove that "well-borrowed evaluations of well-typed programs do not get stuck". Second, we implement our type system in Flux, a plug-in to the Rust compiler that exploits the factoring of complex invariants into types and refinements to efficiently synthesize loop annotations-including complex quantified invariants describing the contents of containers-via liquid inference. Third, we evaluate Flux with a benchmark suite of vector manipulating programs and parts of a previously verified secure sandboxing library to demonstrate the advantages of refinement types over program logics as implemented in the state-of-the-art Prusti verifier. While Prusti's more expressive program logic can, in general, verify deep functional correctness specifications, for the lightweight but ubiquitous and important verification use-cases covered by our benchmarks, liquid typing makes verification ergonomic by slashing specification lines by a factor of two, verification time by an order of magnitude, and annotation overhead from up to 24% of code size (average 14%), to nothing at all. 
    more » « less
  3. RedLeaf is a new operating system being developed from scratch to utilize formal verification for implementing provably secure firmware. RedLeaf is developed in a safe language, Rust, and relies on automated reasoning using satisfiability modulo theories (SMT) solvers for formal verification. RedLeaf builds on two premises: (1) Rust's linear type system enables practical language safety even for systems with tightest performance and resource budgets (e.g., firmware), and (2) a combination of SMT-based reasoning and pointer discipline enforced by linear types provides a unique way to automate and simplify verification effort scaling it to the size of a small OS kernel. 
    more » « less
  4. This paper develops a new approach to verifying a performant file system that isolates crash safety and concurrency reasoning to a transaction system that gives atomic access to the disk, so that the rest of the file system can be verified with sequential reasoning. We demonstrate this approach in DaisyNFS, a Network File System (NFS) server written in Go that runs on top of a disk. DaisyNFS uses GoTxn, a new verified, concurrent transaction system that extends GoJournal with two-phase locking and an allocator. The transaction system's specification formalizes under what conditions transactions can be verified with only sequential reasoning, and comes with a mechanized proof in Coq that connects the specification to the implementation. As evidence that proofs enjoy sequential reasoning, DaisyNFS uses Dafny, a sequential verification language, to implement and verify all the NFS operations on top of GoTxn. The sequential proofs helped achieve a number of good properties in DaisyNFS: easy incremental development (for example, adding support for large files), a relatively short proof (only 2x as many lines of proof as code), and a performant implementation (at least 60% the throughput of the Linux NFS server exporting ext4 across a variety of benchmarks). 
    more » « less
  5. We present DRYADdec, a decidable logic that allows reasoning about tree data-structures with measurements. This logic supports user-defined recursive measure functions based on Max or Sum, and recursive predicates based on these measure functions, such as AVL trees or red-black trees. We prove that the logic’s satisfiability is decidable. The crux of the decidability proof is a small model property which allows us to reduce the satisfiability of DRYADdec to quantifier-free linear arithmetic theory which can be solved efficiently using SMT solvers. We also show that DRYADdec can encode a variety of verification and synthesis problems, including natural proof verification conditions for functional correctness of recursive tree-manipulating programs, legality conditions for fusing tree traversals, synthesis conditions for conditional linear-integer arithmetic functions. We developed the decision procedure and successfully solved 220+ DRYADdec formulae raised from these application scenarios, including verifying functional correctness of programs manipulating AVL trees, red-black trees and treaps, checking the fusibility of height-based mutually recursive tree traversals, and counterexample-guided synthesis from linear integer arithmetic specifications. To our knowledge, DRYADdec is the first decidable logic that can solve such a wide variety of problems requiring flexible combination of measure-related, data-related and shape-related properties for trees. 
    more » « less