In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2production. The nonlinear interactions among these drivers can be context‐specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation. We were particularly interested in Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in Our study demonstrates that adult Our results are in agreement with recent literature that OA scenarios for the next 100–300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid‐base balance.
Climate change is one of the biggest challenges facing development and continuation of sustainable aquaculture in temperate regions. We primarily consider the ecological and physical resilience of aquaculture in the Gulf of Maine (GoM), where a thriving industry includes marine algae, extensive and intensive shellfish aquaculture, and a well‐established Atlantic salmon industry, as well as the infrastructure required to support these economically important ventures. The historical record of sea surface temperature in the GoM, estimated from gridded, interpolated
- NSF-PAR ID:
- 10379026
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Reviews in Aquaculture
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 1753-5123
- Page Range / eLocation ID:
- p. 460-503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.M. edulis from GOM exposed to warming and OA. We have measured whole‐organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevatedP CO2levels (~400 vs. 800 µatm, respectively).M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase). -
Abstract Ocean waters of the Northeast US continental shelf have warmed rapidly in recent years, with sea surface temperatures rising 2.5 times faster than those of the global oceans. With this strong warming trend, the frequency and duration of marine heatwaves have increased. These temperature changes stood out as a distinct warm temperature regime during the 2010s. During this decade, fish population characteristics also differed from the past. Species distribution shifts were detected for many species, demonstrating one way species could adapt to warming conditions. However, for most species, distribution shifts were insufficient to avoid warmer surface or bottom temperatures. As species occupied warmer habitats, growth patterns aligned with expectations for warming temperatures. Consistent with the temperature-size rule, some species exhibited faster growth at early life stages but plateaued at smaller body sizes; other species, however, experienced reduced growth across all ages, indicating thermal stress. Finally, population productivity indexed by the recruit-to-spawner ratio declined significantly during the 2010s for some populations. Changes in these three processes—distribution, growth, and productivity—indicate the emergence of climate change signals across multiple Northeast US fish populations. These effects create new challenges for fishery managers and industry participants operating in the context of non-stationarity and uncertainty.
-
Abstract The 2010
Deepwater Horizon (DwH ) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH , the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH , although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience. -
Abstract Species around the world are shifting their ranges in response to climate change. To make robust predictions about climate‐related colonizations and extinctions, it is vital to understand the dynamics of range edges. This study is among the first to examine annual dynamics of cold and warm range edges, as most global change studies average observational data over space or over time. We analyzed annual range edge dynamics of marine fishes—both at the individual species level and pooled into cold‐ and warm‐edge assemblages—in a multi‐decade time‐series of trawl surveys conducted on the Northeast US Shelf during a period of rapid warming. We tested whether cold edges show stronger evidence of climate tracking than warm edges (due to non‐climate processes or time lags at the warm edge; the
biogeography hypothesis orextinction debt hypothesis ), or whether they tracked temperature change equally (due to the influence of habitat suitability; theecophysiology hypothesis ). In addition to exploring correlations with regional temperature change, we calculated species‐ and assemblage‐specific sea bottom and sea surface temperature isotherms and used them to predict range edge position. Cold edges shifted further and tracked sea surface and bottom temperature isotherms to a greater degree than warm edges. Mixed‐effects models revealed that for a one‐degree latitude shift in isotherm position, cold edges shifted 0.47 degrees of latitude, and warm edges shifted only 0.28 degrees. Our results suggest that cold range edges are tracking climate change better than warm range edges, invalidating the ecophysiology hypothesis. We also found that even among highly mobile marine ectotherms in a global warming hotspot, few species are fully keeping pace with climate. -
Abstract Rising atmospheric carbon dioxide is warming Arctic seawater at a rate twice the global average due to multiple positive feedbacks. Thus, warming is disproportionately influencing data‐poor Arctic marine ecosystems. Subarctic flora are an important component of these ecosystems, along with the less biodiverse flora endemic to the Arctic. Warming will likely lead to an increasing dominance of subarctic flora that will be initially successful due to a shorter sea ice period. Benthic crustose coralline algae presently flourishes in subarctic regions where they are key substrate builders that influence community structure through provision of habitat for a variety of benthic organisms. Here we evaluate changes in the skeletal resilience of long‐lived subarctic crustose coralline alga
Clathromorphum compactum to variability in seawater temperature and sea ice (the later which influences salinity and solar irradiance reaching the seafloor) across latitudes in the northwest Atlantic and Arctic Oceans. We demonstrate that average growth and calcification rate significantly decreases inC. compactum toward higher latitudes due to colder temperatures and more fresh waters. Skeletal density also declines toward higher latitudes but displays specimen‐specific variability. However, through a common growth period (1984–2001), density increased at all locations which we interpret to be a response to warmer and more well‐lit benthic environments. At the most northerly site, growth and calcification also increased with density, suggesting warming and declining Arctic sea ice in the spring may benefit this species at its upper latitudinal limits. As a result, continued warming may enhance the presence ofC. compactum in Arctic regions.