Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricanemore »
Understanding Local News Social Coverage and Engagement at Scale during the COVID-19 Pandemic
During the COVID-19 pandemic, local news organizations have played an important role in keeping communities informed about the spread and impact of the virus. We explore how political, social media, and economic factors impacted the way local media reported on COVID-19 developments at a national scale between January 2020 and July 2021. We construct and make available a dataset of over 10,000 local news organizations and their social media handles across the U.S. We use social media data to estimate the population reach of outlets (their “localness”), and capture underlying content relationships between them. Building on this data, we analyze how local and national media covered four key COVID-19 news topics: Statistics and Case Counts, Vaccines and Testing, Public Health Guidelines, and Economic Effects. Our results show that news outlets with higher population reach reported proportionally more on COVID-19 than more local outlets. Separating the analysis by topic, we expose more nuanced trends, for example that outlets with a smaller population reach covered the Statistics and Case Counts topic proportionally more, and the Economic Effects topic proportionally less. Our analysis further shows that people engaged proportionally more and used stronger reactions when COVID-19 news were posted by outlets with a more »
- Award ID(s):
- 1840751
- Publication Date:
- NSF-PAR ID:
- 10379039
- Journal Name:
- Proceedings of the International AAAI Conference on Web and Social Media
- Volume:
- 16
- Page Range or eLocation-ID:
- 560 to 572
- ISSN:
- 2162-3449
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-locationmore »
-
When social movement organizations receive extensive newspaper coverage, why is it sometimes substantive and sometimes not? By “substantive,” we mean coverage that reflects serious treatment of the movement's issues, demands, or policy claims. Scholars agree that the news media are key to movement organizations' influence, helping them alter public discourse and effect political change, but often find that protests are covered nonsubstantively. Employing insights from literatures on historical institutionalism, the social organization of the news, and the consequences of movements, we elaborate an “institutional mediation” model that identifies the interactive effects on coverage of news institutions' operating procedures, movement organizations' characteristics and action, and political contexts. Although movement actors suffer compound legitimacy deficits with journalists, the institutional mediation model identifies the openings news institutions provide, the movement organizational characteristics, the forms of collective action likely to induce substantive news treatment, and the political contexts that will amplify or dampen these effects. We derive four interactive hypotheses from this model, addressing the effects of organizational identities, collective action, and political contexts on news outcomes. We appraise the hypotheses with comparative and qualitative comparative analyses of more than 1000 individually coded articles discussing the five most-covered organizations of the 1960s U.S. civilmore »
-
Since the start of coronavirus disease 2019 (COVID-19) pandemic, social media platforms have been filled with discussions about the global health crisis. Meanwhile, the World Health Organization (WHO) has highlighted the importance of seeking credible sources of information on social media regarding COVID-19. In this study, we conducted an in-depth analysis of Twitter posts about COVID-19 during the early days of the COVID-19 pandemic to identify influential sources of COVID-19 information and understand the characteristics of these sources. We identified influential accounts based on an information diffusion network representing the interactions of Twitter users who discussed COVID-19 in the United States over a 24-h period. The network analysis revealed 11 influential accounts that we categorized as: 1) political authorities (elected government officials), 2) news organizations, and 3) personal accounts. Our findings showed that while verified accounts with a large following tended to be the most influential users, smaller personal accounts also emerged as influencers. Our analysis revealed that other users often interacted with influential accounts in response to news about COVID-19 cases and strongly contested political arguments received the most interactions overall. These findings suggest that political polarization was a major factor in COVID-19 information diffusion. We discussed the implicationsmore »
-
Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as wellmore »