skip to main content

Title: Printed microfluidic sweat sensing platform for cortisol and glucose detection
Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a “smart bandage” microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 μM, and reproducible response curves at flow rates of 2.0 μL min −1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as more » a low-cost, real-time, multi-diagnostic device for human health monitoring. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
2039268
Publication Date:
NSF-PAR ID:
10379062
Journal Name:
Lab on a Chip
Volume:
22
Issue:
1
Page Range or eLocation-ID:
156 to 169
ISSN:
1473-0197
Sponsoring Org:
National Science Foundation
More Like this
  1. Perspiration level monitoring enables numerous applications such as physical condition estimation, personal comfort monitoring, health/exercise monitoring, and inference of environmental conditions of the user. Prior works on perspiration (sweat) sensing require users to manually hold a device or attach adhesive sensors directly onto their skin, limiting user mobility and comfort. In this paper, we present a low-cost and novel wearable sensor system that is able to accurately estimate an individual's sweat level based on measuring moisture. The sensor is designed in a threadlike form factor, allowing it to be sewn into the seams of clothing, rather than having to act as a standalone sensor that the user must attach to their body. The system is comprised of multiple cotton-covered conductive threads that are braided into one sensor. When a person sweats, the resistance between the braided conductive threads changes as moisture becomes trapped in the cotton covering of the threads. The braided three-dimensional structure allows for robust estimation of perspiration level in the presence of external forces that may cause sensor distortion, such as motion. We characterize the relationship between the volume of sweat and measured resistance between the braided threads. Finally, we weave our sensors into the fabric ofmore »a shirt and conduct on-body experiments to study users' sweating level through various activities.« less
  2. Lab-on-a-chip technology offers an ideal platform for low-cost, reliable, and easy-to-use diagnostics of key biomarkers needed for early screening of diseases and other health concerns. In this work, a graphene field-effect transistor (GFET) functionalized with target-binding aptamers is used as a biosensor for the detection of thrombin protein biomarker. Furthermore, this GFET is integrated with a microfluidic device for enhanced sensing performances in terms of detection limit, sensitivity, and continuous monitoring. Under this platform, a picomolar limit of detection was achieved for measuring thrombin; in our experiment measured as low as 2.6 pM. FTIR, Raman and UV-Vis spectroscopy measurements were performed to confirm the device functionalization steps. Based on the concentration-dependent calibration curve, a dissociation constant of K D = 375.8 pM was obtained. Continuous real-time measurements were also conducted under a constant gate voltage ( V GS ) to observe the transient response of the sensor when analyte was introduced to the device. The target selectivity of the sensor platform was evaluated and confirmed by challenging the GFET biosensor with various concentrations of lysozyme protein. The results suggest that this device technology has the potential to be used as a general diagnostic platform for measuring clinically relevant biomarkers formore »point-of-care applications.« less
  3. We report a novel label-free quantitative detection of human performance “stress” biomarkers in different body fluids based on optical absorbance of the biomarkers in the ultraviolet (UV) region. Stress biomarker (hormones and neurotransmitters) concentrations in bodily fluids (blood, sweat, urine, saliva) predict the physical and mental state of the individual. The stress biomarkers primarily focused on in this manuscript are cortisol, serotonin, dopamine, norepinephrine, and neuropeptide Y. UV spectroscopy of stress biomarkers performed in the 190–400 nm range has revealed primary and secondary absorption peaks at near-UV wavelengths depending on their molecular structure. UV characterization of individual and multiple biomarkers is reported in various biofluids. A microfluidic/optoelectronic platform for biomarker detection is reported, with a prime focus toward cortisol evaluation. The current limit of detection of cortisol in sweat is ∼200 ng/mL (∼0.5 μM), which is in the normal (healthy) range. Plasma samples containing both serotonin and cortisol resulted in readily detectable absorption peaks at 203 (serotonin) and 247 (cortisol) nm, confirming feasibility of simultaneous detection of multiple biomarkers in biofluid samples. UV spectroscopy performed on various stress biomarkers shows a similar increasing absorption trend with concentration. The detection mechanism is label free, applicable to a variety of biomarker types,more »and able to detect multiple biomarkers simultaneously in various biofluids. A microfluidic flow cell has been fabricated on a polymer substrate to enable point-of-use/care UV measurement of target biomarkers. The overall sensor combines sample dispensing and fluid transport to the detection location with optical absorption measurements with a UV light emitting diode (LED) and photodiode. The biomarker concentration is indicated as a function of photocurrent generated at the target wavelength.« less
  4. Smart bracelets able to interpret the wearer's emotional state and communicate it to a remote decision-support facility will have broad applications in healthcare, elder care, the military, and other fields. While there are existing commercial embedded devices, such as the Apple Watch, that have health-monitoring sensors, such devices cannot sufficiently support a real-time health-monitoring system with battery-efficient remote data delivery. Ongoing R&D is developing solutions capable of monitoring multiple psycho-physiological signals. Possible hardware configurations include wrist-worn devices and sensors across an augmented reality headset (e.g., HoloLens 2). The device should carry an array of sensors of psycho-physiological signals, including a galvanic skin response sensor, motion sensor, skin temperature sensor, and a heart rate sensor. Output from these sensors can be intelligently fused to monitor the affective state and to determine specific trigger events for the wearer. To enable real-time remote monitoring applications, the device needs to be low-power to allow persistent monitoring while prolonging usage before recharging. For many applications, specialized sensor arrays are required, e.g. a galvanic skin response sensor. An application-flexible device would allow adding/removing sensors and would provide a choice of communication modules (e.g., Bluetooth 5.0 low-energy vs ZigBee). Appropriate configurations of the device would support applicationsmore »in military health monitoring, drug-addiction mitigation, autistic trigger monitoring, and augmented reality exploration. A configuration example is: motion sensors (3-axis accelerometers, gyroscopes, and magnetometers to track steps, falls, and energy usage), a heart-rate sensor (e.g., an optical-based heart rate sensor with a single monitoring zone using the process of photoplethysmography (PPS)), at least a Bluetooth 5.0 (but a different communication device may be needed depending on the use case), and flash memory to temporarily store data when the device is not remotely communicating. The wearables field has greatly advanced in the quality of sensors; the fusion of multi-sensor data is the current frontier.« less
  5. Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior tomore »modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications.« less