skip to main content

Title: Stable coexistence or competitive exclusion? Fern endophytes demonstrate rapid turnover favouring a dominant fungus

Fungal endophytes are critical members of the plant microbiome, but their community dynamics throughout an entire growing season are underexplored. Additionally, most fungal endophyte research has centred on seed‐reproducing hosts, while spore‐reproducing plants also host endophytes and may be colonized by unique community members. In order to examine annual fungal endophyte community dynamics in a spore‐reproducing host, we explored endophytes in a single population of ferns,Polystichum munitum, in the Pacific Northwest. Through metabarcoding, we characterized the community assembly and temporal turnover of foliar endophytes throughout a growing season. From these results, we selected endophytes with outsized representations in sequence data and performedin vitrocompetition assays. Finally, we inoculated sterile fern gametophytes with dominant fungi observed in the field and determined their effects on host performance. Sequencing demonstrated that ferns were colonized by a diverse community of fungal endophytes in newly emerged tissue, but diversity decreased throughout the season leading to the preponderance of a single fungus in later sampling months. This previously undescribed endophyte appears to abundantly colonize the host to the detriment of other microfungi. Competition assays on a variety of media types failed to demonstrate that the dominant fungus was competitive against other fungi isolated from the same hosts, and inoculation onto sterile fern gametophytes did not alter growth compared to sterile controls, suggesting its effects are not antagonistic. The presence of this endophyte in the fern population probably demonstrates a case of repeated colonization driving competitive exclusion of other fungal community members.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 244-257
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiang, Tzen-Yuh (Ed.)

    Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grassAndropogon gerardiiand characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities ofA.gerardii.

    more » « less
  2. Abstract

    All plants including cotton host a wide range of microorganisms as endophytes. There is a growing appreciation of the prevalence, ecological significance and management potential of facultative fungal endophytes in protecting plants from pests, pathogens and environmental stressors. Hemipteran sucking bugs have emerged as major pests across the U.S. cotton belt, reducing yields directly by feeding on developing reproductive structures and indirectly by vectoring plant pathogens. We used no‐choice and simultaneous choice assays to examine the host selection behavior of western tarnished plant bugs (Lygus hesperus) and southern green stink bugs (Nezara viridula) in response to developing flower buds and fruits from cotton plants colonized by 1 of 2 candidate beneficial fungal endophytes,Phialemonium inflatumorBeauveria bassiana. Both insect species exhibited strong negative responses to flower buds (L. hesperus) and fruits (N. viridula) from plants that had been colonized by candidate endophytic fungi relative to control plants under both no‐choice and choice conditions. Behavioral responses of both species indicated that the insects were deterred prior to contact with plant tissues from endophyte‐colonized plants, suggesting a putative role for volatile compounds in mediating the negative response. Our results highlight the role of fungal endophytes as plant mutualists that can have positive effects on plant resistance to pests.

    more » « less
  3. Abstract

    Understanding the origins and maintenance of host specificity, or why horizontally‐acquired symbionts associate with some hosts but not others, remains elusive. In this study, we explored whether patterns of host specificity in foliar fungal endophytes, a guild of highly diverse fungi that occur within the photosynthetic tissues of all major plant lineages, were related to characteristics of the plant community. We comprehensively sampled all plant host species within a single community and tested the relationship between plant abundance or plant evolutionary relatedness and metrics of endophyte host specificity. We quantified host specificity with methods that considered the total endophyte community per plant host (i.e., multivariate methods) along with species‐based methods (i.e., univariate metrics) that considered host specificity from the perspective of each endophyte. Univariate host specificity metrics quantified plant alpha‐diversity (structural specificity), plant beta‐diversity (beta‐specificity), and plant phylogenetic diversity (phylogenetic specificity) per endophyte. We standardized the effect sizes of univariate host specificity metrics to randomized distributions to avoid spurious correlations between host specificity metrics and endophyte abundance. We found that more abundant plant species harbored endophytes that occupied fewer plant species (higher structural specificity) and were consistently found in the same plant species across the landscape (higher beta‐specificity). There was no relationship between plant phylogenetic distance and endophyte community dissimilarity. We still found that endophyte community composition significantly varied among plant species, families, and major groups, supporting a plant identity effect. In particular, endophytes in angiosperm lineages associated with narrower phylogenetic breadths of plants (higher phylogenetic specificity) compared to endophytes within conifer and fern lineages. Overall, an effect of plant species abundance may help explain why horizontally‐transmitted endophytes vary geographically within host species ranges.

    more » « less
  4. null (Ed.)
    Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization. 
    more » « less
  5. null (Ed.)
    Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways—including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva–a vertically transmitted and usually abundant fungus–within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles. 
    more » « less