skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Method to transfer Chinese hamster ovary (CHO) batch shake flask experiments to large-scale, computer-controlled fed-batch bioreactors
Chinese hamster ovary (CHO) cell cultures in industry are most commonly conducted as fed-batch cultures in computer-controlled bioreactors, though most preliminary studies are conducted in fed-batch shake flasks. To improve comparability between bioreactor studies and shake flask studies, shake flask studies should be conducted as fed-batch. However, the smaller volumes and reduced control in shake flasks can impact pH and aeration, which leads to performance differences. Planning and awareness of these vessel and control differences can assist with experimental design as well as troubleshooting. This method will highlight several of the configuration and control issues that should be considered during the transitions from batch to fed-batch and shake flasks to bioreactors, as well as approaches to mitigate the differences. Furthermore, if significant differences occur between bioreactor and shake flask studies, approaches will be presented to isolate the main contributors for these differences.  more » « less
Award ID(s):
1736123
PAR ID:
10379113
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Methods in enzymology
Volume:
660
ISSN:
0076-6879
Page Range / eLocation ID:
297-320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fed-batch processes are commonly used in industry to obtain sufficient biomass and associated recombinant protein or plasmids. In research laboratories, it is more common to use batch cultures, as the setup of fed-batch processes can be challenging. This method outlines a robust and reliable means to generate Escherichia coli biomass in a minimum amount of fermentation time using a standardized fed-batch process. Final cell densities can reach over 50g dry cell weight per liter (g dcw/L) depending on the strain. This method uses a predefined exponential feeding strategy and conservative induction protocol to achieve these targets without multiple trial and error studies. If desired, productivity can be optimized by balancing the induction time and feed rates. This method utilizes cost-efficient defined media, minimizes process control complexity, and potentially aids downstream purification. 
    more » « less
  2. Chain elongation is a relevant bioprocess in support of a circular economy as it can use a variety of organic feedstocks for production of valuable short and medium chain carboxylates, such as butyrate (C4), caproate (C6), and caprylate (C8). Alcohols, including the biofuel, butanol (C4), can also be generated in chain elongation but the bioreactor conditions that favor butanol production are mainly unknown. In this study we investigated production of butanol (and its precursor butyrate) during ethanol and acetate chain elongation. We used semi-batch bioreactors (0.16 L serum bottles) fed with a range of ethanol concentrations (100–800 mM C), a constant concentration of acetate (50 mM C), and an initial total gas pressure of ∼112 kPa. We showed that the butanol concentration was positively correlated with the ethanol concentration provided (up to 400 mM C ethanol) and to chain elongation activity, which produced H 2 and further increased the total gas pressure. In bioreactors fed with 400 mM C ethanol and 50 mM C acetate, a concentration of 114.96 ± 9.26 mM C butanol (∼2.13 g L −1 ) was achieved after five semi-batch cycles at a total pressure of ∼170 kPa and H 2 partial pressure of ∼67 kPa. Bioreactors with 400 mM C ethanol and 50 mM C acetate also yielded a butanol to butyrate molar ratio of 1:1. At the beginning of cycle 8, the total gas pressure was intentionally decreased to ∼112 kPa to test the dependency of butanol production on total pressure and H 2 partial pressure. The reduction in total pressure decreased the molar ratio of butanol to butyrate to 1:2 and jolted H 2 production out of an apparent stall. Clostridium kluyveri (previously shown to produce butyrate and butanol) and Alistipes (previously linked with butyrate production) were abundant amplicon sequence variants in the bioreactors during the experimental phases, suggesting the microbiome was resilient against changes in bioreactor conditions. The results from this study clearly demonstrate the potential of ethanol and acetate-based chain elongation to yield butanol as a major product. This study also supports the dependency of butanol production on limiting acetate and on high total gas and H 2 partial pressures. 
    more » « less
  3. Abstract Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr ® 250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes. 
    more » « less
  4. ABSTRACT Hydrophobic feedstocks such as waste cooking oil have recently been considered for microbial biotransformation due to their abundance, low cost, and unique advantage for lipid‐derived fermentation products. Most fermentations with hydrophobic substrates are conducted at the tube or flask scale (less than 1 L total volume) or with the hydrophobic substrate comprising a small fraction of the media. Low substrate concentrations require additional feeding. Alternatively, high concentrations do not require significant dilution of the oil feedstock, which reduce volumetric requirements for larger scale fermentations. However, high‐oil‐density fermentations complicate efficient mixing and mass transfer challenges which are exacerbated at larger scales. To address this, computational fluid dynamics (CFD) models were explored to simulate three‐phase (hydrophobic, hydrophilic, and gaseous) bench (3 L) and pilot scale (4000 L) bioreactors, highlighting challenges and potential considerations. Bioreactor fermentations ofYarrowia lipolyticastrain L36DGA1 with substrate loadings of 5%, 10%, 20%, 30%, 40%, and 50% (v/v) waste cooking oil were also conducted, representing one of the highest concentrations in the reported literature. This work supports future research into and implementation of high‐oil‐density fermentations at the bench and pilot bioreactor scale. 
    more » « less
  5. Abstract In tissue engineering, once a scaffold has completed mechanical property testing, it must then undergo biological characterization which determines if the scaffold is capable of supporting cell viability. To perform biological tests, cells must be seeded onto a scaffold with the help of bioreactors, the four main types being: (i) rotating wall, (ii) spinner flask, (iii) compression, and (iv) perfusion bioreactor. In perfusion bioreactors, a consistent flow of material is introduced (using a pump) into the inlet of the bioreactor chamber where multiple scaffolds of a disc geometry are located. However, the intrinsic, complex interaction between the scaffolds and material flow as it goes through the bioreactor chamber affects the viability of the seeded stem cells. Therefore, there is a need to identify consequential fluid dynamics phenomena governing the material flow in a perfusion bioreactor. In this study, using a CFD model, the effects of critical scaffold parameters (such as the number of scaffolds, scaffold diameter, scaffold thickness, and number of pores) on the main flow properties (i.e., flow pressure, wall shear stress, and streamline velocity) influential in cell proliferation and bone development will be investigated. It was observed that increasing the number of pores, in addition to decreasing the pore diameter had an adverse effect on the maximum forces occurring on the scaffold. In addition, changing the overall scaffold diameter did not appear to have as much as an effect as the other parameters. Furthermore, it was observed that a decrease in porosity would lead to an increase in wall shear stress and consequently in cell death. Overall, the outcomes of this study pave the way for optimal design, fabrication, and preparation of cell-laden bone scaffolds for treatment of bone fractures in clinical settings. 
    more » « less