skip to main content


Title: Tris( ortho ‐carboranyl)borane: An Isolable, Halogen‐Free, Lewis Superacid
Abstract

The synthesis of tris(ortho‐carboranyl)borane (BoCb3), a single site neutral Lewis superacid, in one pot from commercially available materials is achieved. The high fluoride ion affinity (FIA) confirms its classification as a Lewis superacid and the Gutmann‐Beckett method as well as adducts with Lewis bases indicate stronger Lewis acidity over the widely used fluorinated aryl boranes. The electron withdrawing effect ofortho‐carborane and lack of pi‐delocalization of the LUMO rationalize the unusually high Lewis acidity. Catalytic studies indicate that BoCb3is a superior catalyst for promoting C−F bond functionalization reactions than tris(pentafluorophenyl)borane [B(C6F5)3].

 
more » « less
NSF-PAR ID:
10379123
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
134
Issue:
46
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The synthesis of tris(ortho‐carboranyl)borane (BoCb3), a single site neutral Lewis superacid, in one pot from commercially available materials is achieved. The high fluoride ion affinity (FIA) confirms its classification as a Lewis superacid and the Gutmann‐Beckett method as well as adducts with Lewis bases indicate stronger Lewis acidity over the widely used fluorinated aryl boranes. The electron withdrawing effect ofortho‐carborane and lack of pi‐delocalization of the LUMO rationalize the unusually high Lewis acidity. Catalytic studies indicate that BoCb3is a superior catalyst for promoting C−F bond functionalization reactions than tris(pentafluorophenyl)borane [B(C6F5)3].

     
    more » « less
  2. Reactions of tris(ortho-carboranyl)borane with Lewis bases reveals only small bases bind. The tremendous bulk and Lewis acidity is leveraged in frustrated Lewis pair Si–H cleavage with a wider range of Lewis bases and greater efficacy than B(C6F5)3.

     
    more » « less
  3. Abstract

    The Lewis superacid, bis(1‐methyl‐ortho‐carboranyl)borane, is rapidly accessed in two steps. It is a very effective hydroboration reagent capable of B−H addition to alkenes, alkynes, and cyclopropanes. To date, this is the first identified Lewis superacidic secondary borane and most reactive neutral hydroboration reagent.

     
    more » « less
  4. Abstract

    The Lewis superacid, bis(1‐methyl‐ortho‐carboranyl)borane, is rapidly accessed in two steps. It is a very effective hydroboration reagent capable of B−H addition to alkenes, alkynes, and cyclopropanes. To date, this is the first identified Lewis superacidic secondary borane and most reactive neutral hydroboration reagent.

     
    more » « less
  5. We report the synthesis and characterization of homoleptic borane adducts of hexacyanoferrate( ii ). Borane coordination blueshifts d–d transitions and CN IR and Raman frequencies. Control over redox properties is established with respect to borane Lewis acidity, reflected in peak anodic potential shifts per borane of +250 mV for BPh 3 and +350 mV for B(C 6 F 5 ) 3 . Electron transfer from [Fe(CN-B(C 6 F 5 ) 3 ) 6 ] 4− to photogenerated [Ru(2,2′-bipyridine) 3 ] 3+ is very rapid, consistent with voltammetry data. Coordination by Lewis acids provides an avenue for selective modification of the electronic structures and electrochemical properties of cyanometalates. 
    more » « less