skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual Telepresence for the Future of ROV Teleoperations: Opportunities and Challenges
Underwater robots, including Remote Operating Vehicles (ROV) and Autonomous Underwater Vehicles (AUV), are currently used to support underwater missions that are either impossible or too risky to be performed by manned systems. In recent years the academia and robotic industry have paved paths for tackling technical challenges for ROV/AUV operations. The level of intelligence of ROV/AUV has increased dramatically because of the recent advances in low-power-consumption embedded computing devices and machine intelligence (e.g., AI). Nonetheless, operating precisely underwater is still extremely challenging to minimize human intervention due to the inherent challenges and uncertainties associated with the underwater environments. Proximity operations, especially those requiring precise manipulation, are still carried out by ROV systems that are fully controlled by a human pilot. A workplace-ready and worker-friendly ROV interface that properly simplifies operator control and increases remote operation confidence is the central challenge for the wide adaptation of ROVs. This paper examines the recent advances of virtual telepresence technologies as a solution for lowering the barriers to the human-in-the-loop ROV teleoperation. Virtual telepresence refers to Virtual Reality (VR) related technologies that help a user to feel that they were in a hazardous situation without being present at the actual location. We present a pilot system of using a VR-based sensory simulator to convert ROV sensor data into human-perceivable sensations (e.g., haptics). Building on a cloud server for real-time rendering in VR, a less trained operator could possibly operate a remote ROV thousand miles away without losing the minimum situational awareness. The system is expected to enable an intensive human engagement on ROV teleoperation, augmenting abilities for maneuvering and navigating ROV in unknown and less explored subsea regions and works. This paper also discusses the opportunities and challenges of this technology for ad hoc training, workforce preparation, and safety in the future maritime industry. We expect that lessons learned from our work can help democratize human presence in future subsea engineering works, by accommodating human needs and limitations to lower the entrance barrier.  more » « less
Award ID(s):
2128895 2128924
PAR ID:
10379202
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The SNAME 27th Offshore Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The utilization of remote operated vehicles (ROVs) has become essential across various subsea industries, such as oil and gas exploration and offshore wind energy, yet significant challenges remain in achieving effective human-ROV interaction. Despite advancements, ROV operations are hindered by complex control systems, high physical and cognitive demands on pilots, and a lack of sensory feedback mechanisms that fully convey the underwater environment’s dynamics. This study addresses these gaps by surveying ROV pilots and industry stakeholders to identify prevalent operational challenges, essential skills, and perspectives on integrating novel teleoperation technologies, including mixed reality and haptic feedback. Findings reveal a strong industry interest in technologies that enhance situational awareness and ease control demands, although concerns remain regarding practical integration and operator fatigue. By highlighting the critical skills required and potential benefits of human-centered augmentation systems, this study provides insights to inform future ergonomic designs, training frameworks, and technology development aimed at advancing safe and effective ROV teleoperation. 
    more » « less
  2. Abstract ROV operations are mainly performed via a traditional control kiosk and limited data feedback methods, such as the use of joysticks and camera view displays equipped on a surface vessel. This traditional setup requires significant personnel on board (POB) time and imposes high requirements for personnel training. This paper proposes a virtual reality (VR) based haptic-visual ROV teleoperation system that can substantially simplify ROV teleoperation and enhance the remote operator's situational awareness. This study leverages the recent development in Mixed Reality (MR) technologies, sensory augmentation, sensing technologies, and closed-loop control, to visualize and render complex underwater environmental data in an intuitive and immersive way. The raw sensor data will be processed with physics engine systems and rendered as a high-fidelity digital twin model in game engines. Certain features will be visualized and displayed via the VR headset, whereas others will be manifested as haptic and tactile cues via our haptic feedback systems. We applied a simulation approach to test the developed system. With our developed system, a high-fidelity subsea environment is reconstructed based on the sensor data collected from an ROV including the bathymetric, hydrodynamic, visual, and vehicle navigational measurements. Specifically, the vehicle is equipped with a navigation sensor system for real-time state estimation, an acoustic Doppler current profiler for far-field flow measurement, and a bio-inspired artificial literal-line hydrodynamic sensor system for near-field small-scale hydrodynamics. Optimized game engine rendering algorithms then visualize key environmental features as augmented user interface elements in a VR headset, such as color-coded vectors, to indicate the environmental impact on the performance and function of the ROV. In addition, augmenting environmental feedback such as hydrodynamic forces are translated into patterned haptic stimuli via a haptic suit for indicating drift-inducing flows in the near field. A pilot case study was performed to verify the feasibility and effectiveness of the system design in a series of simulated ROV operation tasks. ROVs are widely used in subsea exploration and intervention tasks, playing a critical role in offshore inspection, installation, and maintenance activities. The innovative ROV teleoperation feedback and control system will lower the barrier for ROV pilot jobs. 
    more » « less
  3. Underwater ROVs (Remotely Operated Vehicles) are unmanned submersibles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator’s ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand third-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics. 
    more » « less
  4. Underwater ROVs (Remotely Operated Vehicles) are unmanned submersibles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator’s ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand third-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics. 
    more » « less
  5. Teleoperation enables complex robot platforms to perform tasks beyond the scope of the current state-of-the-art robot autonomy by imparting human intelligence and critical thinking to these operations. For seamless control of robot platforms, it is essential to facilitate optimal situational awareness of the workspace for the operator through active telepresence cameras. However, the control of these active telepresence cameras adds an additional degree of complexity to the task of teleoperation. In this paper we present our results from the user study that investigates: (1) how the teleoperator learns or adapts to performing the tasks via active cameras modeled after camera placements on the TRINA humanoid robot; (2) the perception-action coupling operators implement to control active telepresence cameras, and (3) the camera preferences for performing the tasks. These findings from the human motion analysis and post-study survey will help us determine desired design features for robot teleoperation interfaces and assistive autonomy. 
    more » « less