skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Dragonfly Wing Project
Nature has always been the master of design skills to which humans only aspire to, but new approaches bring that aspiration closer to our reach than ever before. Through 4.5 billion years of iterations, nature has shown us its extraordinary craftsmanship, breeding a variety of species whose body structures have gradually evolved to adapt to natural phenomena and make full use of their unique characteristics. The dragonfly wing, among body structure is an extreme example of efficient use of materials and minimal weight while remaining strong enough to withstand the tremendous forces of flight. It has long been the object of scientific research examining its structural advantages to applying their principles to fabricated designs.1 We can imitate its form and create duplicates, but thoroughly understanding the dragonfly wing’s mechanism, behavior and design logic is no trivial task.  more » « less
Award ID(s):
1944691
PAR ID:
10379246
Author(s) / Creator(s):
;
Editor(s):
del Campo, Matias; Leach, Neil
Date Published:
Journal Name:
Architectural design
Volume:
92
Issue:
3
ISSN:
0003-8504
Page Range / eLocation ID:
132-133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Del Campo, Matias; Leach, Neil (Ed.)
    Special Issue: Machine Hallucinations: Architecture and Artificial Intelligence Nature has always been the master of design skills to which humans only aspire, but new approaches bring that aspiration closer to our reach than ever before. Through 4.5 billion years of iterations, nature has shown us its extraordinary craftsmanship, breeding a variety of species whose body structures have gradually evolved to adapt to natural phenomena and make full use of their unique characteristics. The dragonfly wing, among body structures, is an extreme example of efficient use of materials and minimal weight while remaining strong enough to withstand the tremendous forces of flight. It has long been the object of scientific research examining its structural advantages to apply its principles to fabricated designs.1 We can imitate its form and create duplicates, but thoroughly understanding the dragonfly wing’s mechanism, behavior, and design logic is no trivial task. 
    more » « less
  2. This research investigates the use of graphic statics in analyzing the structural geometry of a natural phenomenon to understand their performance and their relevant design parameters. Nature has always been inspiring for designers, engineers, and scientists. Structural systems in nature are constantly evolving to optimize themselves with their boundary conditions and the applied loads. Such phenomena follow certain design rules that are quite challenging for humans to formulate or even comprehend. A dragonfly wing is an instance of a high-performance, lightweight structure that has intrigued many researchers to investigate its geometry and its performance as one of the most light-weight structures designed by nature [1]. There are extensive geometrical and analytical studies on the pattern of the wing, but the driving design logic is not clear. The geometry of the internal members of the dragonfly wings mainly consists of convex cells which may, in turn, represent a compression-only network on a 2D plane. However, this phenomenon has never been geometrically analyzed from this perspective to confirm this hypothesis. In this research, we use the methods of 2D graphic statics to construct the force diagram from the given structural geometry of the wing. We use algebraic and geometric graphic statics to unfold the topological and geometric properties of the form and force diagrams such as the degrees of indeterminacies of the network [2]. We then reconstruct the compression-only network of the wing for more than 300 cases for the same boundary conditions and the edge lengths of the independent edges of the network. Comparing the magnitude of the internal forces of the reconstructed network with the actual structure of the wing using the edge length of the force diagram will shed light on the performance of the structure. Multiple analytical studies will be provided to compare the results in both synthetic and natural networks and drive solid conclusions. The success in predicting the internal force flow in the natural structural pattern using graphic statics will expand the use of these powerful methods in reproducing the exact geometry of the natural structural system for use in many engineering and scientific problems. It will also ultimately help us understand the design parameters and boundary conditions for which nature produces its masterpieces. 
    more » « less
  3. We present spatially resolved Keck Cosmic Web Imager stellar spectroscopy of the Virgo cluster dwarf galaxies VCC 9 and VCC 1448. These galaxies have similar stellar masses and large half-light radii but very different globular cluster (GC) system richness (∼25 versus ∼99 GCs). Using the KCWI data, we spectroscopically confirm 10 GCs associated with VCC 1448 and one GC associated with VCC 9. We make two measurements of dynamical mass for VCC 1448 based on the stellar and GC velocities, respectively. VCC 1448’s mass measurements suggest that it resides in a halo in better agreement with the expectation of the stellar mass–halo mass relationship than the expectation from its large GC counts. For VCC 9, the dynamical mass we measure agrees with the expected halo mass from both relationships. We compare VCC 1448 and VCC 9 to the GC-rich galaxy Dragonfly 44 (∼74 GCs), which is similar in size but has ∼1 dex less stellar mass than either Virgo galaxy. In dynamical mass – GC number space, Dragonfly 44 and VCC 1448 exhibit richer GC systems given their dynamical mass than that of VCC 9 and other ‘normal’ galaxies. We also place the galaxies in kinematics–ellipticity space finding evidence of an anticorrelation between rotational support and the fraction of a galaxy’s stellar mass in its GC system, that is, VCC 9 is more rotationally supported than VCC 1448, which is more rotationally supported than Dragonfly 44. This trend may be expected if a galaxy’s GC content depends on its natal gas properties at formation. 
    more » « less
  4. Dragonfly class of networks are considered as promising interconnects for next-generation supercomputers. While Dragonfly+ networks offer more path diversity than the original Dragonfly design, they are still prone to performance variability due to their hierarchical architecture and resource sharing design. Event-driven network simulators are indispensable tools for navigating complex system design. In this study, we quantitatively evaluate a variety of application communication interactions on a 3,456-node Dragonfly+ system by using the CODES toolkit. This study looks at the impact of communication interference from a user’s perspective. Specifically, for a given application submitted by a user, we examine how this application will behave with the existing workload running in the system under different job placement policies. Our simulation study considers hundreds of experiment configurations including four target applications with representative communication patterns under a variety of network traffic conditions. Our study shows that intra-job interference can cause severe performance degradation for communication-intensive applications. Inter-job interference can generally be reduced for applications with one-toone or one-to-many communication patterns through job isolation. Application with one-to-all communication pattern is resilient to network interference. 
    more » « less
  5. The Dragonfly network has been deployed in the current generation supercomputers and will be used in the next generation supercomputers. The Universal Globally Adaptive Load-balance routing (UGAL) is the state-of-the-art routing scheme for Dragonfly. In this work, we show that the performance of the conventional UGAL can be further improved on many practical Dragonfly networks, especially the ones with a small number of groups, by customizing the paths used in UGAL for each topology. We develop a scheme to compute the custom sets of paths for each topology and compare the performance of our topology-custom UGAL routing (T-UGAL) with conventional UGAL. Our evaluation with different UGAL variations and different topologies demonstrates that by customizing the routes, T-UGAL offers significant improvements over UGAL on many practical Dragonfly networks in terms of both latency when the network is under low load and throughput when the network is under high load. 
    more » « less