skip to main content


Title: They like to move it (move it): walking kinematics of balitorid loaches of Thailand
ABSTRACT Balitorid loaches are a family of fishes that exhibit morphological adaptations to living in fast flowing water, including an enlarged sacral rib that creates a ‘hip’-like skeletal connection between the pelvis and the axial skeleton. The presence of this sacral rib, the robustness of which varies across the family, is hypothesized to facilitate terrestrial locomotion seen in the family. Terrestrial locomotion in balitorids is unlike that of any known fish: the locomotion resembles that of terrestrial tetrapods. Emergence and convergence of terrestrial locomotion from water to land has been studied in fossils; however, studying balitorid walking provides a present-day natural laboratory to examine the convergent evolution of walking movements. We tested the hypothesis that balitorid species with more robust connections between the pelvic and axial skeleton (M3 morphotype) are more effective at walking than species with reduced connectivity (M1 morphotype). We predicted that robust connections would facilitate travel per step and increase mass support during movement. We collected high-speed video of walking in seven balitorid species to analyze kinematic variables. The connection between internal anatomy and locomotion on land are revealed herein with digitized video analysis, μCT scans, and in the context of the phylogenetic history of this family of fishes. Our species sampling covered the extremes of previously identified sacral rib morphotypes, M1 and M3. Although we hypothesized the robustness of the sacral rib to have a strong influence on walking performance, there was not a large reduction in walking ability in the species with the least modified rib (M1). Instead, walking kinematics varied between the two balitorid subfamilies with a generally more ‘walk-like’ behavior in the Balitorinae and more ‘swim-like’ behavior in the Homalopteroidinae. The type of terrestrial locomotion displayed in balitorids is unique among living fishes and aids in our understanding of the extent to which a sacral connection facilitates terrestrial walking.  more » « less
Award ID(s):
1839915
NSF-PAR ID:
10379248
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
225
Issue:
6
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The rheophilic hillstream loaches (Balitoridae) of South and Southeast Asia possess a range of pelvic girdle morphologies, which may be attributed to adaptations for locomotion against rapidly flowing water. Specifically, the connectivity of the pelvic plate (basipterygium) to the vertebral column via a sacral rib, and the relative size and shape of the sacral rib, fall within a spectrum of three discrete morphotypes: long, narrow rib that meets the basipterygium; thicker, slightly curved rib meeting the basipterygium; and robust crested rib interlocking with the basipterygium. Species in this third category with more robust sacral rib connections between the basipterygium and vertebral column are capable of walking out of water with a tetrapod‐like lateral‐sequence, diagonal‐couplet gait. This behavior has not been observed in species lacking direct skeletal connection between the vertebrae and the pelvis. The phylogenetic positions of the morphotypes were visualized by matching the morphological features onto a novel hypothesis of relationships for the family Balitoridae. The morphotypes determined through skeletal morphology were correlated with patterns observed in the pelvic muscle morphology of these fishes. Transitions towards increasingly robust pelvic girdle attachment were coincident with a more anterior origin on the basipterygium and more lateral insertion of the muscles on the fin rays, along with a reduction of the superficial abductors and adductors with more posterior insertions. These modifications are expected to provide a mechanical advantage for generating force against the ground. Inclusion of the enigmatic cave‐adapted balitoridCryptotora thamicolainto the most data‐rich balitorid phylogeny reveals its closest relatives, providing insight into the origin of the skeletal connection between the axial skeleton and basipterygium.

     
    more » « less
  2. ABSTRACT

    The sacrum occupies a functionally important anatomical position as part of the pelvic girdle and vertebral column. Sacral orientation and external morphology in modern humans are distinct from those in other primates and compatible with the demands of habitual bipedal locomotion. Among nonhuman primates, however, how sacral anatomy relates to positional behaviors is less clear. As an alternative to evaluation of the sacrum's external morphology, this study assesses if the sacrum's internal morphology (i.e., trabecular bone) differs among extant primates. The primary hypothesis tested is that trabecular bone parameters with established functional relevance will differ in the first sacral vertebra (S1) among extant primates that vary in positional behaviors. Results for analyses of individual variables demonstrate that bone volume fraction, degree of anisotropy, trabecular number, and size‐corrected trabecular thickness differ among primates grouped by positional behaviors to some extent, but not always in ways consistent with functional expectations. When examined as a suite, these trabecular parameters distinguish obligate bipeds from other positional behavior groups; and, the latter three trabecular bone variables further distinguish knuckle‐walking terrestrial quadrupeds from manual suspensor‐brachiators, vertical clingers and leapers, and arboreal quadrupeds, as well as between arboreal and terrestrial quadrupeds. As in other regions of the skeleton in modern humans, trabecular bone in S1 exhibits distinctively low bone volume fraction. Results from this study of extant primate S1 trabecular bone structural variation provide a functional context for interpretations concerning the positional behaviors of extinct primates based on internal sacral morphology. Anat Rec, 302:1354–1371, 2019. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  3. Abstract Objectives

    Great apes provide a point of reference for understanding the evolution of locomotion in hominoids and early hominins. We assessed (1) the extent to which great apes use diagonal sequence, diagonal couplet gaits, like other primates, (2) the extent to which gait and posture vary across great apes, and (3) the role of body mass and limb proportions on ape quadrupedal kinematics.

    Methods

    High‐speed digital video of zoo‐housed bonobos (Pan paniscus, N = 8), chimpanzees (Pan troglodytes, N = 13), lowland gorillas (Gorilla gorilla, N = 13), and orangutans (Pongo spp. N = 6) walking over‐ground at self‐selected speeds were used to determine the timing of limb touch‐down, take‐off, and to measure joint and segment angles at touch‐down, midstance, and take‐off.

    Results

    The great apes in our study showed broad kinematic and spatiotemporal similarity in quadrupedal walking. Size‐adjusted walking speed was the strongest predictor of gait variables. Body mass had a negligible effect on variation in joint and segment angles, but stride frequency did trend higher among larger apes in analyses including size‐adjusted speed. In contrast to most other primates, great apes did not favor diagonal sequence footfall patterns, but exhibited variable gait patterns that frequently shifted between diagonal and lateral sequences.

    Conclusion

    Similarities in the terrestrial walking kinematics of extant great apes likely reflect their similar post‐cranial anatomy and proportions. Our results suggest that the walking kinematics of orthograde, suspensory Miocene ape species were likely similar to living great apes, and highlight the utility of videographic and behavioral data in interpreting primate skeletal morphology.

     
    more » « less
  4. Abstract

    The epaulette shark, Hemiscyllium ocellatum, is a small, reef-dwelling, benthic shark that—using its paired fins—can walk, both in and out of water. Within the reef flats, this species experiences short periods of elevated CO2 and hypoxia as well as fluctuating temperatures as reef flats become isolated with the outgoing tide. Past studies have shown that this species is robust (i.e., respiratory and metabolic performance, behavior) to climate change-relevant elevated CO2 levels as well as hypoxia and anoxia tolerant. However, epaulette shark embryos reared under ocean warming conditions hatch earlier and smaller, with altered patterns and coloration, and with higher metabolic costs than their current-day counterparts. Findings to date suggest that this species has adaptations to tolerate some, but perhaps not all, of the challenging conditions predicted for the 21st century. As such, the epaulette shark is emerging as a model system to understand vertebrate physiology in changing oceans. Yet, few studies have investigated the kinematics of walking and swimming, which may be vital to their biological fitness, considering their habitat and propensity for challenging environmental conditions. Given that neonates retain embryonic nutrition via an internalized yolk sac, resulting in a bulbous abdomen, while juveniles actively forage for worms, crustaceans, and small fishes, we hypothesized that difference in body shape over early ontogeny would affect locomotor performance. To test this, we examined neonate and juvenile locomotor kinematics during the three aquatic gaits they utilize—slow-to-medium walking, fast walking, and swimming—using 13 anatomical landmarks along the fins, girdles, and body midline. We found that differences in body shape did not alter kinematics between neonates and juveniles. Overall velocity, fin rotation, axial bending, and tail beat frequency and amplitude were consistent between early life stages. Data suggest that the locomotor kinematics are maintained between neonate and juvenile epaulette sharks, even as their feeding strategy changes. Studying epaulette shark locomotion allows us to understand this—and perhaps related—species’ ability to move within and away from challenging conditions in their habitats. Such locomotor traits may not only be key to survival, in general, as a small, benthic mesopredator (i.e., movements required to maneuver into small reef crevices to avoid aerial and aquatic predators), but also be related to their sustained physiological performance under challenging environmental conditions, including those associated with climate change—a topic worthy of future investigation.

     
    more » « less
  5. ABSTRACT

    Many derived aspects of modern human axial skeletal morphology reflect our reliance on obligate bipedal locomotion. Insight into the adaptive significance of features, particularly in the spine, has been gained through experimental studies that induce bipedal standing or walking in quadrupedal mammals. Using an experimental animal model (Rattus norvegicus), the present study builds on earlier work by incorporating additional metrics of the cranium, employing quantitative methods established in the paleoanthropological literature, and exploring how variation in mechanical loading regimes impacts axial anatomy. Rats were assigned to one of five experimental groups, including “fully loaded bipedal walking,” “partially loaded bipedal walking,” “standing bipedally,” “quadrupedal walking,” and “no exercise control,” and engaged in the behavior over 12‐weeks. From μCT data obtained at the beginning and end of the experiment, we measured foramen magnum position and orientation, lumbar vertebral body wedging, cranial surface area of the lumbar and first sacral vertebral bodies, and sacral mediolateral width. Results demonstrate that bipedal rodents generally have more anteriorly positioned foramina magna, more dorsally wedged lumbar vertebrae, greater articular surface areas of lumbar and first sacral vertebral bodies, and sacra that exhibit greater mediolateral widths, compared to quadrupedal rodents. We further document variation among bipedal loading behavior groups (e.g., bipedal standing vs. walking). Our experimental animal model reveals how loading behaviors and adaptations may be specifically linked, and implicates a potential role for developmental plasticity in the evolutionary acquisition of bipedal adaptations in the hominin lineage. Anat Rec, 2018. © 2018 American Association for Anatomy.

     
    more » « less